{"title":"0.5 GHz femtosecond Yb:YAG thin-disk oscillator.","authors":"Tingting Yang, Heyan Liu, Qingzhe Cui, Xudong Wei, Guichun Xia, Kunjian Dai, Qing Wang, Jinwei Zhang","doi":"10.1364/OL.557650","DOIUrl":null,"url":null,"abstract":"<p><p>Thin-disk oscillators have made significant progress in high power and pulse energy generation, but their ability to achieve high repetition rates is limited, primarily due to the structure of the multi-pass pumping cavity and the requirement for large beam spot sizes within the cavity. In this Letter, we employed an asymmetric cavity structure and used a thin-disk crystal as an end mirror, successfully achieving repetition rates of 432 MHz and 520 MHz in Kerr-lens mode-locked Yb:YAG thin-disk oscillators, with corresponding output powers of 33 W and 36 W and pulse durations of 253 fs and 276 fs, respectively. These results represent the highest, to the best of our knowledge, repetition rates reported for mode-locked thin-disk oscillators to date. Achieving a repetition rate of 1 GHz appears feasible by integrating custom components within the disk pumping module.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2235-2238"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.557650","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Thin-disk oscillators have made significant progress in high power and pulse energy generation, but their ability to achieve high repetition rates is limited, primarily due to the structure of the multi-pass pumping cavity and the requirement for large beam spot sizes within the cavity. In this Letter, we employed an asymmetric cavity structure and used a thin-disk crystal as an end mirror, successfully achieving repetition rates of 432 MHz and 520 MHz in Kerr-lens mode-locked Yb:YAG thin-disk oscillators, with corresponding output powers of 33 W and 36 W and pulse durations of 253 fs and 276 fs, respectively. These results represent the highest, to the best of our knowledge, repetition rates reported for mode-locked thin-disk oscillators to date. Achieving a repetition rate of 1 GHz appears feasible by integrating custom components within the disk pumping module.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.