{"title":"Megawatt peak-power, single-mode, mid-infrared femtosecond pulse delivery at 5-6 μm via a silica-based anti-resonant hollow core fiber.","authors":"Ang Deng, Linzhen He, Yuxi Wang, Trivikramarao Gavara, Liangliang Lu, Wonkeun Chang, Hongyu Luo, Jianfeng Li, Houkun Liang","doi":"10.1364/OL.555306","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate the first, to our knowledge, delivery of megawatt peak power, single-mode mid-infrared (MIR) femtosecond pulses at 5-6 μm using a silica-based anti-resonant hollow core fiber (AR-HCF). Benefiting from the light confinement inside the hollow core, the AR-HCF exhibits high damage thresholds, reliable power stability, efficient spatial beam self-cleaning, and pulse shape preservation. Pumped by a homemade LGS-based two-stage optical parametric amplifier generating high-power ∼200 fs pulses, the fiber achieves a maximum delivered peak power of 4 MW at 5.1 μm and 5 MW at 6.1 μm, with peak intensities reaching 100 GW/cm<sup>2</sup>, despite fiber losses exceeding 2 dB/m. This flexible, meter-scale delivery system demonstrates exceptional potential for addressing the challenges of high peak power MIR laser delivery in precise, minimally invasive interventional ablation, particularly at resonant peaks such as amide-I (6.1 μm) and cholesterol esters (5.75 μm).</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2149-2152"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.555306","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate the first, to our knowledge, delivery of megawatt peak power, single-mode mid-infrared (MIR) femtosecond pulses at 5-6 μm using a silica-based anti-resonant hollow core fiber (AR-HCF). Benefiting from the light confinement inside the hollow core, the AR-HCF exhibits high damage thresholds, reliable power stability, efficient spatial beam self-cleaning, and pulse shape preservation. Pumped by a homemade LGS-based two-stage optical parametric amplifier generating high-power ∼200 fs pulses, the fiber achieves a maximum delivered peak power of 4 MW at 5.1 μm and 5 MW at 6.1 μm, with peak intensities reaching 100 GW/cm2, despite fiber losses exceeding 2 dB/m. This flexible, meter-scale delivery system demonstrates exceptional potential for addressing the challenges of high peak power MIR laser delivery in precise, minimally invasive interventional ablation, particularly at resonant peaks such as amide-I (6.1 μm) and cholesterol esters (5.75 μm).
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.