Chitosan nanoparticle encapsulation of thymus capitatus essential oil: in vitro release, antioxidant, antibacterial activity and cytotoxicity in MDA-MB-231 cells.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Huseyin Beyaz, Doga Kavaz, Nahit Rizaner
{"title":"Chitosan nanoparticle encapsulation of <i>thymus capitatus</i> essential oil: <i>in vitro</i> release, antioxidant, antibacterial activity and cytotoxicity in MDA-MB-231 cells.","authors":"Huseyin Beyaz, Doga Kavaz, Nahit Rizaner","doi":"10.1080/10837450.2025.2487255","DOIUrl":null,"url":null,"abstract":"<p><p><i>Thymus capitatus (Th. Ca)</i> is known to treat mouth ulcers and respiratory infections in Cyprus. However, antioxidant, antibacterial, and cytotoxic potential of <i>Th. Ca.</i> EO on MDA-MB-231 cells and its' encapsulation into nanoparticles has not been well studied. Therefore, we aimed to analyze the antioxidant, antibacterial, cytotoxic potential, loading efficiency, and <i>in vitro</i> release profile of both <i>Th. Ca.</i> EO and Chitosan Nanoparticle (Ch. Np) - <i>Th. Ca.</i> EO. GC-MS analysis revealed 53.97% carvacrol, 14.53% borneol, and 12.09% sabinene presence in EO. The loading efficiency of <i>Th. Ca.</i> EO into Ch. Np. was calculated as 35.27% and the <i>in vitro</i> release profile reached a maximum of 68% in pH 7 for two weeks. The Minimum Inhibitory Concentration (MIC) assay showed that <i>E. coli</i> had an MIC<sub>50</sub> of 0.3215 mg/ml while <i>B. subtilis</i> had an MIC<sub>50</sub> of 0.5304 mg/ml. The antioxidant activity of the EO was assessed by performing a DPPH assay with an IC<sub>50</sub> = 440 μg/ml. Trypan Blue Assay revealed that 60 µg/ml <i>Th. Ca.</i> EO significantly reduced the cell viability of MDA-MB-231 cells by 10.7% at 48h and 20.06% at 72h. Overall, Ch. Np. - <i>Th. Ca.</i> EO has shown a promising formulation for the pharmaceutical industry.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"385-399"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2487255","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Thymus capitatus (Th. Ca) is known to treat mouth ulcers and respiratory infections in Cyprus. However, antioxidant, antibacterial, and cytotoxic potential of Th. Ca. EO on MDA-MB-231 cells and its' encapsulation into nanoparticles has not been well studied. Therefore, we aimed to analyze the antioxidant, antibacterial, cytotoxic potential, loading efficiency, and in vitro release profile of both Th. Ca. EO and Chitosan Nanoparticle (Ch. Np) - Th. Ca. EO. GC-MS analysis revealed 53.97% carvacrol, 14.53% borneol, and 12.09% sabinene presence in EO. The loading efficiency of Th. Ca. EO into Ch. Np. was calculated as 35.27% and the in vitro release profile reached a maximum of 68% in pH 7 for two weeks. The Minimum Inhibitory Concentration (MIC) assay showed that E. coli had an MIC50 of 0.3215 mg/ml while B. subtilis had an MIC50 of 0.5304 mg/ml. The antioxidant activity of the EO was assessed by performing a DPPH assay with an IC50 = 440 μg/ml. Trypan Blue Assay revealed that 60 µg/ml Th. Ca. EO significantly reduced the cell viability of MDA-MB-231 cells by 10.7% at 48h and 20.06% at 72h. Overall, Ch. Np. - Th. Ca. EO has shown a promising formulation for the pharmaceutical industry.

壳聚糖纳米颗粒包封胸腺精油:体外释放、抗氧化、抗菌活性及MDA-MB-231细胞毒性。
胸腺(Th)在塞浦路斯,已知Ca可治疗口腔溃疡和呼吸道感染。然而,Th的抗氧化、抗菌和细胞毒性潜力。Ca. EO对MDA-MB-231细胞的作用及其包封成纳米颗粒的研究尚不充分。因此,我们旨在分析这两种化合物的抗氧化、抗菌、细胞毒潜能、负载效率和体外释放谱。壳聚糖纳米粒子(Ch. Np) - Th。EO Ca。GC-MS分析显示,精油中含有53.97%的香芹酚、14.53%的冰片和12.09%的sabinene。Th的加载效率。将EO转换为Ch. Np。为35.27%,在pH为7的条件下,2周的体外释放率最高达68%。最小抑菌浓度(MIC)测定结果表明,大肠杆菌的MIC50为0.3215 mg/ml,枯草芽孢杆菌的MIC50为0.5304 mg/ml。DPPH法测定其抗氧化活性,IC50 = 440 μg/ml。台盼蓝法检测显示60µg/ml Th;Ca. EO显著降低MDA-MB-231细胞48h和72h的细胞活力,分别降低10.7%和20.06%。总的来说,Ch. Np。- Th。Ca. EO已显示出一种很有前途的制药业配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信