Sheng Wang, Zhenyu Zhang, Shangyin Zhou, Bijun Xu, Xiaogang Wang
{"title":"High-security optical encryption based on single-pixel imaging and structured light multiplexing holography.","authors":"Sheng Wang, Zhenyu Zhang, Shangyin Zhou, Bijun Xu, Xiaogang Wang","doi":"10.1364/OL.557688","DOIUrl":null,"url":null,"abstract":"<p><p>The applications of single-pixel imaging (SPI) and optical multiplexing techniques in optical encryption are gradually increasing. However, little attention has been given to integrating these two for applications. Here, we propose a dual-layer optical encryption scheme that combines sample region-dependent SPI and structured light multiplexing holography. In the encryption process, the bucket signal obtained by SPI and the position coordinates used to generate the structured illumination patterns for SPI will be encrypted into a holographic ciphertext through spatial-structured light multiplexing holography. During decryption, the bucket signal can be retrieved from the ciphertext using a binary matrix key, and the sampling region can be determined by illuminating the ciphertext with multi-ramp helical-conical beams. Thus, the original secret image can be successfully decrypted. This work takes advantage of the spatial mode multiplexing characteristics of the structured beams and the dependence of Fourier SPI encryption on the sampling region, thereby promoting the collaborative application of the two in the field of optical security.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2378-2381"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.557688","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The applications of single-pixel imaging (SPI) and optical multiplexing techniques in optical encryption are gradually increasing. However, little attention has been given to integrating these two for applications. Here, we propose a dual-layer optical encryption scheme that combines sample region-dependent SPI and structured light multiplexing holography. In the encryption process, the bucket signal obtained by SPI and the position coordinates used to generate the structured illumination patterns for SPI will be encrypted into a holographic ciphertext through spatial-structured light multiplexing holography. During decryption, the bucket signal can be retrieved from the ciphertext using a binary matrix key, and the sampling region can be determined by illuminating the ciphertext with multi-ramp helical-conical beams. Thus, the original secret image can be successfully decrypted. This work takes advantage of the spatial mode multiplexing characteristics of the structured beams and the dependence of Fourier SPI encryption on the sampling region, thereby promoting the collaborative application of the two in the field of optical security.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.