Heavy Solution for Molecular Thermal Management: Phonon Transport Suppression with Heavy Atoms.

IF 3.7 Q2 CHEMISTRY, PHYSICAL
ACS Physical Chemistry Au Pub Date : 2025-01-22 eCollection Date: 2025-03-26 DOI:10.1021/acsphyschemau.4c00084
William Bro-Jørgensen, Andreas Juul Bay-Smidt, Davide Donadio, Gemma C Solomon
{"title":"Heavy Solution for Molecular Thermal Management: Phonon Transport Suppression with Heavy Atoms.","authors":"William Bro-Jørgensen, Andreas Juul Bay-Smidt, Davide Donadio, Gemma C Solomon","doi":"10.1021/acsphyschemau.4c00084","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal management in molecular systems presents challenges that require a deeper understanding of phonon transport, an essential aspect of heat conduction in single-molecule junctions. Our work introduces the use of heavy atoms as a strategy for suppressing phonon transport in organic molecules. Starting with a one-dimensional (1D) force-constant model and density functional theory calculations of model chemical systems, we illustrate how increasing the mass of a central atom affects phonon transmission and conductance. Following this, we turned our attention to the chemically accessible systems of metallapolyynes and extended metal atom chains (EMACs). Our findings suggest that several of the studied EMACs exhibit thermal conductance either near or below a recently proposed threshold of 10 pW/K-a crucial step toward reaching high thermoelectric figure of merits. Specifically, we predict that the molecule MoMoNi(npo)<sub>4</sub>(NCS)<sub>2</sub> has a thermal conductance of just 8.3 pW/K at 300 K. Our results demonstrate that conceptually simple chemical modifications can markedly reduce the thermal conductance of single molecules; these results both deepen our understanding of the mechanisms driving single-molecule phonon thermal conductance and suggest a path toward using single molecules as thermoelectric materials.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 2","pages":"162-170"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.4c00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal management in molecular systems presents challenges that require a deeper understanding of phonon transport, an essential aspect of heat conduction in single-molecule junctions. Our work introduces the use of heavy atoms as a strategy for suppressing phonon transport in organic molecules. Starting with a one-dimensional (1D) force-constant model and density functional theory calculations of model chemical systems, we illustrate how increasing the mass of a central atom affects phonon transmission and conductance. Following this, we turned our attention to the chemically accessible systems of metallapolyynes and extended metal atom chains (EMACs). Our findings suggest that several of the studied EMACs exhibit thermal conductance either near or below a recently proposed threshold of 10 pW/K-a crucial step toward reaching high thermoelectric figure of merits. Specifically, we predict that the molecule MoMoNi(npo)4(NCS)2 has a thermal conductance of just 8.3 pW/K at 300 K. Our results demonstrate that conceptually simple chemical modifications can markedly reduce the thermal conductance of single molecules; these results both deepen our understanding of the mechanisms driving single-molecule phonon thermal conductance and suggest a path toward using single molecules as thermoelectric materials.

分子热管理的重溶液:用重原子抑制声子输运。
分子系统中的热管理提出了挑战,需要对声子传输有更深入的了解,声子传输是单分子结热传导的一个重要方面。我们的工作介绍了使用重原子作为抑制有机分子中声子传输的策略。从一维(1D)力常数模型和模型化学系统的密度泛函理论计算开始,我们说明了增加中心原子的质量如何影响声子传输和电导。在此之后,我们将注意力转向了金属聚炔和延伸金属原子链(EMACs)的化学可及体系。我们的研究结果表明,所研究的几种EMACs的热导率接近或低于最近提出的10 pW/ k阈值,这是实现高热电性能的关键一步。具体来说,我们预测分子MoMoNi(npo)4(NCS)2在300 K时的热导率仅为8.3 pW/K。我们的研究结果表明,概念上简单的化学修饰可以显著降低单分子的热导率;这些结果加深了我们对单分子声子热导机制的理解,并为利用单分子作为热电材料提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信