Alireza Safarian, Seyed Ali Mirshahvalad, Abolfazl Farbod, Hadi Nasrollahi, Christian Pirich, Mohsen Beheshti
{"title":"Artificial intelligence for tumor [<sup>18</sup>F]FDG-PET imaging: Advancement and future trends-part I.","authors":"Alireza Safarian, Seyed Ali Mirshahvalad, Abolfazl Farbod, Hadi Nasrollahi, Christian Pirich, Mohsen Beheshti","doi":"10.1053/j.semnuclmed.2025.03.003","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of sophisticated image analysis techniques has facilitated the extraction of increasingly complex data, such as radiomic features, from various imaging modalities, including [<sup>18</sup>F]FDG PET/CT, a well-established cornerstone of oncological imaging. Furthermore, the use of artificial intelligence (AI) algorithms has shown considerable promise in enhancing the interpretation of these quantitative parameters. Additionally, AI-driven models enable the integration of parameters from multiple imaging modalities along with clinical data, facilitating the development of comprehensive models with significant clinical impact. However, challenges remain regarding standardization and validation of the AI-powered models, as well as their implementation in real-world clinical practice. The variability in imaging acquisition protocols, segmentation methods, and feature extraction approaches across different institutions necessitates robust harmonization efforts to ensure reproducibility and clinical utility. Moreover, the successful translation of AI models into clinical practice requires prospective validation in large cohorts, as well as seamless integration into existing workflows to assess their ability to enhance clinicians' performance. This review aims to provide an overview of the literature and highlight three key applications: diagnostic impact, prediction of treatment response, and long-term patient prognostication. In the first part, we will focus on head and neck, lung, breast, gastroesophageal, colorectal, and gynecological malignancies.</p>","PeriodicalId":21643,"journal":{"name":"Seminars in nuclear medicine","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in nuclear medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.semnuclmed.2025.03.003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of sophisticated image analysis techniques has facilitated the extraction of increasingly complex data, such as radiomic features, from various imaging modalities, including [18F]FDG PET/CT, a well-established cornerstone of oncological imaging. Furthermore, the use of artificial intelligence (AI) algorithms has shown considerable promise in enhancing the interpretation of these quantitative parameters. Additionally, AI-driven models enable the integration of parameters from multiple imaging modalities along with clinical data, facilitating the development of comprehensive models with significant clinical impact. However, challenges remain regarding standardization and validation of the AI-powered models, as well as their implementation in real-world clinical practice. The variability in imaging acquisition protocols, segmentation methods, and feature extraction approaches across different institutions necessitates robust harmonization efforts to ensure reproducibility and clinical utility. Moreover, the successful translation of AI models into clinical practice requires prospective validation in large cohorts, as well as seamless integration into existing workflows to assess their ability to enhance clinicians' performance. This review aims to provide an overview of the literature and highlight three key applications: diagnostic impact, prediction of treatment response, and long-term patient prognostication. In the first part, we will focus on head and neck, lung, breast, gastroesophageal, colorectal, and gynecological malignancies.
期刊介绍:
Seminars in Nuclear Medicine is the leading review journal in nuclear medicine. Each issue brings you expert reviews and commentary on a single topic as selected by the Editors. The journal contains extensive coverage of the field of nuclear medicine, including PET, SPECT, and other molecular imaging studies, and related imaging studies. Full-color illustrations are used throughout to highlight important findings. Seminars is included in PubMed/Medline, Thomson/ISI, and other major scientific indexes.