Forward polarization sensing triggered area-focus DAS over a bidirectional coherent network.

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-04-01 DOI:10.1364/OL.554903
Jingchuan Wang, Maoqi Liu, Junwei Zhang, Liwang Lu, Alan Pak Tao Lau, Chao Lu
{"title":"Forward polarization sensing triggered area-focus DAS over a bidirectional coherent network.","authors":"Jingchuan Wang, Maoqi Liu, Junwei Zhang, Liwang Lu, Alan Pak Tao Lau, Chao Lu","doi":"10.1364/OL.554903","DOIUrl":null,"url":null,"abstract":"<p><p>Empowering optical communication networks with sensing capabilities is an emerging trend. In this Letter, we propose a method to preliminarily detect perturbations in a bidirectional coherent network by utilizing forward polarization information. This information acts as a trigger and provides prior knowledge to back-scattering-based distributed acoustic sensing (DAS), enabling more detailed event recovery. Consequently, the need to keep DAS continuously active is eliminated, making it highly practical for long-haul, high-resolution DAS sensing networks. Once activated, DAS can focus on a preliminary area of interest, significantly reducing its data processing workload. Experimentally, we employ a commercial 200-kHz laser to simultaneously achieve bidirectional 60-GBaud 16-QAM transmission and forward polarization sensing. The forward sensing information, extracted through equalization taps, triggers area-focused DAS, enabling fine-grained and ultra-low complexity sensing. This seamless integration of communication and sensing functions enhances efficiency and reduces complexity, paving the way for advanced network applications and more effective network surveillance capabilities.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2227-2230"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.554903","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Empowering optical communication networks with sensing capabilities is an emerging trend. In this Letter, we propose a method to preliminarily detect perturbations in a bidirectional coherent network by utilizing forward polarization information. This information acts as a trigger and provides prior knowledge to back-scattering-based distributed acoustic sensing (DAS), enabling more detailed event recovery. Consequently, the need to keep DAS continuously active is eliminated, making it highly practical for long-haul, high-resolution DAS sensing networks. Once activated, DAS can focus on a preliminary area of interest, significantly reducing its data processing workload. Experimentally, we employ a commercial 200-kHz laser to simultaneously achieve bidirectional 60-GBaud 16-QAM transmission and forward polarization sensing. The forward sensing information, extracted through equalization taps, triggers area-focused DAS, enabling fine-grained and ultra-low complexity sensing. This seamless integration of communication and sensing functions enhances efficiency and reduces complexity, paving the way for advanced network applications and more effective network surveillance capabilities.

在双向相干网络上,前向极化传感触发区域聚焦DAS。
赋予光通信网络传感能力是一种新兴趋势。在这篇论文中,我们提出了一种利用前向极化信息初步检测双向相干网络扰动的方法。这些信息可以作为触发器,为基于后向散射的分布式声学传感(DAS)提供先验知识,从而实现更详细的事件恢复。因此,无需保持DAS持续活动,使其在长距离,高分辨率DAS传感网络中非常实用。一旦激活,DAS就可以专注于感兴趣的初步领域,从而显著减少其数据处理工作负载。实验中,我们使用商用200 khz激光器同时实现双向60 gbaud 16-QAM传输和正向极化传感。前向传感信息,通过均衡抽头提取,触发区域聚焦DAS,实现细粒度和超低复杂性传感。这种通信和传感功能的无缝集成提高了效率,降低了复杂性,为先进的网络应用和更有效的网络监控能力铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信