{"title":"Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.","authors":"Yahong Cheng, Chengcheng Gai, Yijing Zhao, Tingting Li, Yan Song, Qian Luo, Danqing Xin, Zige Jiang, Wenqiang Chen, Dexiang Liu, Zhen Wang","doi":"10.1007/s12264-025-01376-6","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01376-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
缺氧缺血性脑损伤具有很高的死亡或终身残疾风险,但有效的治疗方法仍然难以捉摸。在这里,我们证明了新生小鼠HI损伤后损伤皮质中的miR-100-5p水平升高。在脑中敲低miR-100-5p的表达,通过抑制HI损伤后的裂解caspase-3水平、小胶质细胞激活和促炎症细胞因子的释放,减轻脑损伤并促进功能恢复。含有神经元靶向性狂犬病毒糖蛋白(RVG)和miR-100-5p拮抗剂(RVG- ev - antagomir)的工程化细胞外囊泡(ev)选择性靶向脑病变,并在经鼻给药后降低miR-100-5p水平。注射前和注射后均显示出治疗效果。在机制上,我们发现蛋白磷酸酶3催化亚基α (Ppp3ca)是miR-100-5p的一个新的候选靶基因,抑制HI损伤后c-Fos的表达和神经元凋亡。总之,我们的无创方法是利用工程化的ev将miR-100-5p拮抗剂输送到大脑,通过靶向Ppp3ca抑制神经元凋亡,显著改善HI损伤后的功能恢复。
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.