Zihao Ye, Haole Kong, Zhiming Zhang, Zhihang Lin, Yanghui Li, Juan Kang, Le Wang, Yi Li
{"title":"Fiber Bragg grating sensors demodulated by a speckle silicon chip.","authors":"Zihao Ye, Haole Kong, Zhiming Zhang, Zhihang Lin, Yanghui Li, Juan Kang, Le Wang, Yi Li","doi":"10.1364/OL.549969","DOIUrl":null,"url":null,"abstract":"<p><p>Fiber Bragg gratings (FBGs) are widely used as sensors for temperature, strain, and vibration measurement. However, current FBG demodulation methods face issues with stability, size, and cost. In this study, we proposed a silicon-on-insulator (SOI) chip to demodulate FBGs based on random speckles. A 20-mm-long coiled multimode silicon waveguide was designed to generate the speckle pattern, which was then compressed into 8 single-mode outputs. The architecture similarity between the convolutional neural network (CNN), and the proposed SOI chip was discussed. A multilayer perceptron (MLP) network was applied to regress the speckle data for prediction. The demonstrated experiments indicated that a standard deviation of 0.0414°C was achieved in the single FBG demodulation. Furthermore, we also explored the capability of demodulating multiple FBGs. This speckle-based SOI chip provides a highly stable, compact, and lightweight solution in a FBG sensing system.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2302-2305"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.549969","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fiber Bragg gratings (FBGs) are widely used as sensors for temperature, strain, and vibration measurement. However, current FBG demodulation methods face issues with stability, size, and cost. In this study, we proposed a silicon-on-insulator (SOI) chip to demodulate FBGs based on random speckles. A 20-mm-long coiled multimode silicon waveguide was designed to generate the speckle pattern, which was then compressed into 8 single-mode outputs. The architecture similarity between the convolutional neural network (CNN), and the proposed SOI chip was discussed. A multilayer perceptron (MLP) network was applied to regress the speckle data for prediction. The demonstrated experiments indicated that a standard deviation of 0.0414°C was achieved in the single FBG demodulation. Furthermore, we also explored the capability of demodulating multiple FBGs. This speckle-based SOI chip provides a highly stable, compact, and lightweight solution in a FBG sensing system.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.