{"title":"Enhanced Fourier single-pixel imaging via positive-negative dithering.","authors":"Haiyu Fan, Shijian Li, Chongwu Shao, Yinran Shen, Xu-Ri Yao, Qing Zhao","doi":"10.1364/OL.551685","DOIUrl":null,"url":null,"abstract":"<p><p>Fourier single-pixel imaging (FSI) takes full advantage of the high modulation speed of digital micromirror devices by applying upsampling and spatial dithering to binarize grayscale Fourier patterns, thereby achieving efficient imaging. However, the upsampling process of patterns sacrifices spatial resolution. Here, we propose a binarization method for FSI that enhances reconstructed image quality without the need for upsampling. The key is applying spatial dithering with a serpentine path directly to both positive and negative components of Fourier patterns before binarization. By quantizing these components into {-1, 0, +1} values and subsequently mapping them to binary patterns, our method reduces quantization errors in Fourier coefficient acquisition. Both simulation and experimental results demonstrate that the method significantly improves imaging quality. It can also be applied to other types of single-pixel imaging that use positive-negative grayscale patterns.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2247-2250"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.551685","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fourier single-pixel imaging (FSI) takes full advantage of the high modulation speed of digital micromirror devices by applying upsampling and spatial dithering to binarize grayscale Fourier patterns, thereby achieving efficient imaging. However, the upsampling process of patterns sacrifices spatial resolution. Here, we propose a binarization method for FSI that enhances reconstructed image quality without the need for upsampling. The key is applying spatial dithering with a serpentine path directly to both positive and negative components of Fourier patterns before binarization. By quantizing these components into {-1, 0, +1} values and subsequently mapping them to binary patterns, our method reduces quantization errors in Fourier coefficient acquisition. Both simulation and experimental results demonstrate that the method significantly improves imaging quality. It can also be applied to other types of single-pixel imaging that use positive-negative grayscale patterns.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.