Teresa Zhao, Daniella H Hock, James Pitt, David R Thorburn, David A Stroud, John Christodoulou
{"title":"Review: Utility of mass spectrometry in rare disease research and diagnosis.","authors":"Teresa Zhao, Daniella H Hock, James Pitt, David R Thorburn, David A Stroud, John Christodoulou","doi":"10.1038/s41525-025-00487-3","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals affected by a rare disease often experience a long and arduous diagnostic odyssey. Delivery of genetic answers in a timely manner is critical to affected individuals and their families. Multi-omics, a term which usually encompasses genomics, transcriptomics, proteomics, metabolomics and lipidomics, has gained increasing popularity in rare disease research and diagnosis over the past decade. Mass spectrometry (MS) is a technique allowing the study of proteins, metabolites and lipids and their fragments at scale, enabling researchers to effectively determine the presence and abundance of thousands of molecules in a single test, accurately quantify their specific levels, identify potential therapeutic biomarkers, detect differentially expressed proteins in patients with rare diseases, and monitor disease progression and treatment response. In this review, we focus on mass spectrometry (MS)-based omics and survey the literature describing the utility of different MS-based omics and how they have transformed rare disease research and diagnosis.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"29"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958806/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00487-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Individuals affected by a rare disease often experience a long and arduous diagnostic odyssey. Delivery of genetic answers in a timely manner is critical to affected individuals and their families. Multi-omics, a term which usually encompasses genomics, transcriptomics, proteomics, metabolomics and lipidomics, has gained increasing popularity in rare disease research and diagnosis over the past decade. Mass spectrometry (MS) is a technique allowing the study of proteins, metabolites and lipids and their fragments at scale, enabling researchers to effectively determine the presence and abundance of thousands of molecules in a single test, accurately quantify their specific levels, identify potential therapeutic biomarkers, detect differentially expressed proteins in patients with rare diseases, and monitor disease progression and treatment response. In this review, we focus on mass spectrometry (MS)-based omics and survey the literature describing the utility of different MS-based omics and how they have transformed rare disease research and diagnosis.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.