[High expression of hexokinase 2 promotes proliferation, migration and invasion of colorectal cancer cells by activating the JAK/STAT pathway and regulating tumor immune microenvironment].

Q3 Medicine
Shunjie Qing, Zhiyong Shen
{"title":"[High expression of hexokinase 2 promotes proliferation, migration and invasion of colorectal cancer cells by activating the JAK/STAT pathway and regulating tumor immune microenvironment].","authors":"Shunjie Qing, Zhiyong Shen","doi":"10.12122/j.issn.1673-4254.2025.03.12","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the expression of hexokinase 2 (HK2) in colorectal cancer (CRC) and its possible mechanisms for regulating tumor cell behaviors and tumor immune microenvironment.</p><p><strong>Methods: </strong>We analyzed HK2 expression in CRC and its impact on patient prognosis and tumor immune microenvironment using public databases. HK2 expression was also examined in 8 CRC and paired adjacent tissues using immunohistochemistry, Western blotting and RT-qPCR. In cultured CRC cell lines CT26 and HCT116 with low HK2 expression, the effects of lentivirus-mediated HK2 overexpression and JAK/STAT3 inhibitors on cell proliferation, migration, and invasion were assessed using CCK-8 assay, colony formation assay and Transwell assay and in a subcutaneous tumor-bearing mouse model; the changes were also observed in MC38 and CACO2 cells with high HK2 expressions following treatment with HK2 inhibitor 3-BP. Western blotting was performed to verify the relationship between HK2 and JAK/STAT signaling pathway protein expressions.</p><p><strong>Results: </strong>Informatics analyses suggested that HK2 expression was significantly higher in CRC tissues than in adjacent tissues (<i>P</i><0.001), and patients with high HK2 expressions had worse prognosis (<i>P</i>=0.09). In the 8 clinical CRC tissues, HK2 expressions were significantly higher in the tumor tissues than in the adjacent tissues (<i>P</i><0.01). In CT26 and HCT116 cells, HK2 overexpression significantly enhanced cell proliferation, migration and invasion, while in HK2-overexpressing MC38 and CACO2 cells, inhibiting HK2 with 3-BP strongly suppressed these changes. HK2 overexpression promoted STAT3 phosphorylation, and JAK/STAT3 inhibitors effectively suppressed tumor cell proliferation, migration and invasion. TIMER and MCPcounter analyses indicated correlations between HK2 and immune cells, and TCGA and GEO analyses suggested significant positive correlations between HK2 and the immune checkpoints including PDCD1.</p><p><strong>Conclusions: </strong>HK2 is upregulated in CRC to promote tumor cell proliferation, migration and invasion possibly by activating the JAK-STAT signaling pathway and modulating tumor immune microenvironment.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"45 3","pages":"542-553"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2025.03.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To explore the expression of hexokinase 2 (HK2) in colorectal cancer (CRC) and its possible mechanisms for regulating tumor cell behaviors and tumor immune microenvironment.

Methods: We analyzed HK2 expression in CRC and its impact on patient prognosis and tumor immune microenvironment using public databases. HK2 expression was also examined in 8 CRC and paired adjacent tissues using immunohistochemistry, Western blotting and RT-qPCR. In cultured CRC cell lines CT26 and HCT116 with low HK2 expression, the effects of lentivirus-mediated HK2 overexpression and JAK/STAT3 inhibitors on cell proliferation, migration, and invasion were assessed using CCK-8 assay, colony formation assay and Transwell assay and in a subcutaneous tumor-bearing mouse model; the changes were also observed in MC38 and CACO2 cells with high HK2 expressions following treatment with HK2 inhibitor 3-BP. Western blotting was performed to verify the relationship between HK2 and JAK/STAT signaling pathway protein expressions.

Results: Informatics analyses suggested that HK2 expression was significantly higher in CRC tissues than in adjacent tissues (P<0.001), and patients with high HK2 expressions had worse prognosis (P=0.09). In the 8 clinical CRC tissues, HK2 expressions were significantly higher in the tumor tissues than in the adjacent tissues (P<0.01). In CT26 and HCT116 cells, HK2 overexpression significantly enhanced cell proliferation, migration and invasion, while in HK2-overexpressing MC38 and CACO2 cells, inhibiting HK2 with 3-BP strongly suppressed these changes. HK2 overexpression promoted STAT3 phosphorylation, and JAK/STAT3 inhibitors effectively suppressed tumor cell proliferation, migration and invasion. TIMER and MCPcounter analyses indicated correlations between HK2 and immune cells, and TCGA and GEO analyses suggested significant positive correlations between HK2 and the immune checkpoints including PDCD1.

Conclusions: HK2 is upregulated in CRC to promote tumor cell proliferation, migration and invasion possibly by activating the JAK-STAT signaling pathway and modulating tumor immune microenvironment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
南方医科大学学报杂志
南方医科大学学报杂志 Medicine-Medicine (all)
CiteScore
1.50
自引率
0.00%
发文量
208
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信