Matthew Markowitz, Kevin Zelaya, Mohammad-Ali Miri
{"title":"Embedding matrices in programmable photonic networks with flexible depth and width.","authors":"Matthew Markowitz, Kevin Zelaya, Mohammad-Ali Miri","doi":"10.1364/OL.553436","DOIUrl":null,"url":null,"abstract":"<p><p>We show that programmable photonic circuit architectures composed of alternating mixing layers and active layers offer a high degree of flexibility. This alternating configuration enables the systematic tailoring of both the network's depth (number of layers) and width (size of each layer) without compromising computational capabilities. From a mathematical perspective, our approach can be viewed as embedding an arbitrary target matrix into a higher-dimensional matrix, which can then be represented with fewer layers and a larger number of active elements. We derive a general relation for the width and depth of a network that guarantees representing all <i>N</i> × <i>N</i> complex-valued matrix operations. Remarkably, we show that just two such active layers-interleaved with passive mixing layers-are sufficient to universally implement arbitrary matrix transformations. This result promises a more adaptable and scalable route to photonic matrix processors.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2318-2321"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.553436","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that programmable photonic circuit architectures composed of alternating mixing layers and active layers offer a high degree of flexibility. This alternating configuration enables the systematic tailoring of both the network's depth (number of layers) and width (size of each layer) without compromising computational capabilities. From a mathematical perspective, our approach can be viewed as embedding an arbitrary target matrix into a higher-dimensional matrix, which can then be represented with fewer layers and a larger number of active elements. We derive a general relation for the width and depth of a network that guarantees representing all N × N complex-valued matrix operations. Remarkably, we show that just two such active layers-interleaved with passive mixing layers-are sufficient to universally implement arbitrary matrix transformations. This result promises a more adaptable and scalable route to photonic matrix processors.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.