Farhana Azmi, Xiaoxue Xu, Hien Duong, Ping Ye, Titi Chen, Hongxi Li, Jianwei Chen, Sara Madadi Ardekani, Alireza Dehghani, Guoping Zheng, David Harris, Hongxu Lu, Yiping Wang, Qi Cao
{"title":"Renal clearable sucrose carbon dots for doxorubicin delivery to treat renal carcinoma.","authors":"Farhana Azmi, Xiaoxue Xu, Hien Duong, Ping Ye, Titi Chen, Hongxi Li, Jianwei Chen, Sara Madadi Ardekani, Alireza Dehghani, Guoping Zheng, David Harris, Hongxu Lu, Yiping Wang, Qi Cao","doi":"10.1039/d4na01082e","DOIUrl":null,"url":null,"abstract":"<p><p>Renal Cell Carcinoma (RCC) poses challenges for conventional treatment methods, but recent advancements indicate the potential of nanoparticles (NPs) in enhancing chemotherapy efficacy. This study focuses on developing non-toxic NPs from sucrose and l-serine <i>via</i> hydrothermal synthesis to produce Sucrose Carbon Dots (Suc CDs), designed for renal clearance to deliver hydrophilic drugs for the treatment of RCC. Suc CDs with a size of 4 nm exhibit high fluorescence with a fluorescence quantum yield of 58% and high drug loading capacity without toxicity to normal cell lines (renal tubular cells). Under <i>in vitro</i> conditions, Suc CDs alone are non-toxic, while Suc CDs with DOX display improved anticancer effects on Renca cells (cancer cell line). Under <i>in vivo</i> conditions, Suc CDs loaded with DOX outperform DOX alone with reduced toxicity to normal cells. Biodistribution study of Suc CDs revealed prolonged tumour site accumulation. This research demonstrates that renal clearable Suc CDs loaded with DOX exhibit superior anti-cancer activity, and are free of side effects, suggesting promising therapeutic potential for human RCC.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na01082e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Renal Cell Carcinoma (RCC) poses challenges for conventional treatment methods, but recent advancements indicate the potential of nanoparticles (NPs) in enhancing chemotherapy efficacy. This study focuses on developing non-toxic NPs from sucrose and l-serine via hydrothermal synthesis to produce Sucrose Carbon Dots (Suc CDs), designed for renal clearance to deliver hydrophilic drugs for the treatment of RCC. Suc CDs with a size of 4 nm exhibit high fluorescence with a fluorescence quantum yield of 58% and high drug loading capacity without toxicity to normal cell lines (renal tubular cells). Under in vitro conditions, Suc CDs alone are non-toxic, while Suc CDs with DOX display improved anticancer effects on Renca cells (cancer cell line). Under in vivo conditions, Suc CDs loaded with DOX outperform DOX alone with reduced toxicity to normal cells. Biodistribution study of Suc CDs revealed prolonged tumour site accumulation. This research demonstrates that renal clearable Suc CDs loaded with DOX exhibit superior anti-cancer activity, and are free of side effects, suggesting promising therapeutic potential for human RCC.