Renal clearable sucrose carbon dots for doxorubicin delivery to treat renal carcinoma.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Farhana Azmi, Xiaoxue Xu, Hien Duong, Ping Ye, Titi Chen, Hongxi Li, Jianwei Chen, Sara Madadi Ardekani, Alireza Dehghani, Guoping Zheng, David Harris, Hongxu Lu, Yiping Wang, Qi Cao
{"title":"Renal clearable sucrose carbon dots for doxorubicin delivery to treat renal carcinoma.","authors":"Farhana Azmi, Xiaoxue Xu, Hien Duong, Ping Ye, Titi Chen, Hongxi Li, Jianwei Chen, Sara Madadi Ardekani, Alireza Dehghani, Guoping Zheng, David Harris, Hongxu Lu, Yiping Wang, Qi Cao","doi":"10.1039/d4na01082e","DOIUrl":null,"url":null,"abstract":"<p><p>Renal Cell Carcinoma (RCC) poses challenges for conventional treatment methods, but recent advancements indicate the potential of nanoparticles (NPs) in enhancing chemotherapy efficacy. This study focuses on developing non-toxic NPs from sucrose and l-serine <i>via</i> hydrothermal synthesis to produce Sucrose Carbon Dots (Suc CDs), designed for renal clearance to deliver hydrophilic drugs for the treatment of RCC. Suc CDs with a size of 4 nm exhibit high fluorescence with a fluorescence quantum yield of 58% and high drug loading capacity without toxicity to normal cell lines (renal tubular cells). Under <i>in vitro</i> conditions, Suc CDs alone are non-toxic, while Suc CDs with DOX display improved anticancer effects on Renca cells (cancer cell line). Under <i>in vivo</i> conditions, Suc CDs loaded with DOX outperform DOX alone with reduced toxicity to normal cells. Biodistribution study of Suc CDs revealed prolonged tumour site accumulation. This research demonstrates that renal clearable Suc CDs loaded with DOX exhibit superior anti-cancer activity, and are free of side effects, suggesting promising therapeutic potential for human RCC.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na01082e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Renal Cell Carcinoma (RCC) poses challenges for conventional treatment methods, but recent advancements indicate the potential of nanoparticles (NPs) in enhancing chemotherapy efficacy. This study focuses on developing non-toxic NPs from sucrose and l-serine via hydrothermal synthesis to produce Sucrose Carbon Dots (Suc CDs), designed for renal clearance to deliver hydrophilic drugs for the treatment of RCC. Suc CDs with a size of 4 nm exhibit high fluorescence with a fluorescence quantum yield of 58% and high drug loading capacity without toxicity to normal cell lines (renal tubular cells). Under in vitro conditions, Suc CDs alone are non-toxic, while Suc CDs with DOX display improved anticancer effects on Renca cells (cancer cell line). Under in vivo conditions, Suc CDs loaded with DOX outperform DOX alone with reduced toxicity to normal cells. Biodistribution study of Suc CDs revealed prolonged tumour site accumulation. This research demonstrates that renal clearable Suc CDs loaded with DOX exhibit superior anti-cancer activity, and are free of side effects, suggesting promising therapeutic potential for human RCC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信