Microwave characterization of plasmonic antennas through electron energy loss spectroscopy.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Igor Getmanov, Qingxiao Wang, Heng Wang, Atif Shamim, Dalaver H Anjum
{"title":"Microwave characterization of plasmonic antennas through electron energy loss spectroscopy.","authors":"Igor Getmanov, Qingxiao Wang, Heng Wang, Atif Shamim, Dalaver H Anjum","doi":"10.1039/d4na00960f","DOIUrl":null,"url":null,"abstract":"<p><p>The absence of suitable equipment has long hindered traditional microwave characterization of nano-antennas and their effective design at frequencies beyond several terahertz, limiting the exploration of the myriad applications of plasmonic antennas by the microwave engineering community and necessitating a paradigm shift in characterization methods. This work addresses this challenge by introducing a novel approach employing electron energy loss spectroscopy (EELS) to characterize input impedance and scattering parameters of plasmonic antennas from mid-infrared to optical frequencies. Central to this method is a newly developed theoretical framework that links electron energy loss probability with microwave scattering parameters, crucial for antenna design. We validated this approach through a study of a single plasmonic dipole, finding a good correspondence between the measured EEL spectra and our theoretical model, supported by our developed simulation model. Drawing upon this correlation, we proposed an algorithm for the reverse procedure of extracting <i>S</i>-parameters and input impedance from experimental EEL probability. Spatial profiles of input impedance and <i>S</i>-parameters for a single plasmonic dipole were experimentally characterized across the broad frequency spectrum ranging from 25 to 150 THz and compared with simulation results, revealing a robust correlation, particularly at resonant frequencies. Our non-contact method could serve as an alternative approach to microwave parameters characterization, functioning similarly to a vector network analyzer (VNA) but extending its capabilities to much higher frequencies, where VNAs are not available.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949246/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00960f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The absence of suitable equipment has long hindered traditional microwave characterization of nano-antennas and their effective design at frequencies beyond several terahertz, limiting the exploration of the myriad applications of plasmonic antennas by the microwave engineering community and necessitating a paradigm shift in characterization methods. This work addresses this challenge by introducing a novel approach employing electron energy loss spectroscopy (EELS) to characterize input impedance and scattering parameters of plasmonic antennas from mid-infrared to optical frequencies. Central to this method is a newly developed theoretical framework that links electron energy loss probability with microwave scattering parameters, crucial for antenna design. We validated this approach through a study of a single plasmonic dipole, finding a good correspondence between the measured EEL spectra and our theoretical model, supported by our developed simulation model. Drawing upon this correlation, we proposed an algorithm for the reverse procedure of extracting S-parameters and input impedance from experimental EEL probability. Spatial profiles of input impedance and S-parameters for a single plasmonic dipole were experimentally characterized across the broad frequency spectrum ranging from 25 to 150 THz and compared with simulation results, revealing a robust correlation, particularly at resonant frequencies. Our non-contact method could serve as an alternative approach to microwave parameters characterization, functioning similarly to a vector network analyzer (VNA) but extending its capabilities to much higher frequencies, where VNAs are not available.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信