[A multi-scale supervision and residual feedback optimization algorithm for improving optic chiasm and optic nerve segmentation accuracy in nasopharyngeal carcinoma CT images].

Q3 Medicine
Jinyu Liu, Shujun Liang, Yu Zhang
{"title":"[A multi-scale supervision and residual feedback optimization algorithm for improving optic chiasm and optic nerve segmentation accuracy in nasopharyngeal carcinoma CT images].","authors":"Jinyu Liu, Shujun Liang, Yu Zhang","doi":"10.12122/j.issn.1673-4254.2025.03.21","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We propose a novel deep learning segmentation algorithm (DSRF) based on multi-scale supervision and residual feedback strategy for precise segmentation of the optic chiasm and optic nerves in CT images of nasopharyngeal carcinoma (NPC) patients.</p><p><strong>Methods: </strong>We collected 212 NPC CT images and their ground truth labels from SegRap2023, StructSeg2019 and HaN-Seg2023 datasets. Based on a hybrid pooling strategy, we designed a decoder (HPS) to reduce small organ feature loss during pooling in convolutional neural networks. This decoder uses adaptive and average pooling to refine high-level semantic features, which are integrated with primary semantic features to enable network learning of finer feature details. We employed multi-scale deep supervision layers to learn rich multi-scale and multi-level semantic features under deep supervision, thereby enhancing boundary identification of the optic chiasm and optic nerves. A residual feedback module that enables multiple iterations of the network was designed for contrast enhancement of the optic chiasm and optic nerves in CT images by utilizing information from fuzzy boundaries and easily confused regions to iteratively refine segmentation results under supervision. The entire segmentation framework was optimized with the loss from each iteration to enhance segmentation accuracy and boundary clarity. Ablation experiments and comparative experiments were conducted to evaluate the effectiveness of each component and the performance of the proposed model.</p><p><strong>Results: </strong>The DSRF algorithm could effectively enhance feature representation of small organs to achieve accurate segmentation of the optic chiasm and optic nerves with an average DSC of 0.837 and an ASSD of 0.351. Ablation experiments further verified the contributions of each component in the DSRF method.</p><p><strong>Conclusions: </strong>The proposed deep learning segmentation algorithm can effectively enhance feature representation to achieve accurate segmentation of the optic chiasm and optic nerves in CT images of NPC.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"45 3","pages":"632-642"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2025.03.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: We propose a novel deep learning segmentation algorithm (DSRF) based on multi-scale supervision and residual feedback strategy for precise segmentation of the optic chiasm and optic nerves in CT images of nasopharyngeal carcinoma (NPC) patients.

Methods: We collected 212 NPC CT images and their ground truth labels from SegRap2023, StructSeg2019 and HaN-Seg2023 datasets. Based on a hybrid pooling strategy, we designed a decoder (HPS) to reduce small organ feature loss during pooling in convolutional neural networks. This decoder uses adaptive and average pooling to refine high-level semantic features, which are integrated with primary semantic features to enable network learning of finer feature details. We employed multi-scale deep supervision layers to learn rich multi-scale and multi-level semantic features under deep supervision, thereby enhancing boundary identification of the optic chiasm and optic nerves. A residual feedback module that enables multiple iterations of the network was designed for contrast enhancement of the optic chiasm and optic nerves in CT images by utilizing information from fuzzy boundaries and easily confused regions to iteratively refine segmentation results under supervision. The entire segmentation framework was optimized with the loss from each iteration to enhance segmentation accuracy and boundary clarity. Ablation experiments and comparative experiments were conducted to evaluate the effectiveness of each component and the performance of the proposed model.

Results: The DSRF algorithm could effectively enhance feature representation of small organs to achieve accurate segmentation of the optic chiasm and optic nerves with an average DSC of 0.837 and an ASSD of 0.351. Ablation experiments further verified the contributions of each component in the DSRF method.

Conclusions: The proposed deep learning segmentation algorithm can effectively enhance feature representation to achieve accurate segmentation of the optic chiasm and optic nerves in CT images of NPC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
南方医科大学学报杂志
南方医科大学学报杂志 Medicine-Medicine (all)
CiteScore
1.50
自引率
0.00%
发文量
208
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信