{"title":"Drug-Loaded Mitochondrial Targeted Nanoparticles for Tumor Imaging and PDT/PTT Combined Chemotherapy in Muscle-Invasive Bladder Cancer.","authors":"Yuandi Huang, Zeyu Li, Heping Qiu, Chongxing Shen, Jianwu Wang, Benhuang Yan, Jinjin Li, Qiang Fang, Weibing Li, Chunmeng Shi, Yi Zhi","doi":"10.1002/mabi.202400575","DOIUrl":null,"url":null,"abstract":"<p><p>Neoadjuvant chemotherapy combined with radical cystectomy is the standard treatment for muscle-invasive bladder cancer (MIBC). While cisplatin-based regimens reduce postoperative recurrence, their severe toxicity often limits clinical application. Moreover, the need for urinary diversion after radical cystectomy significantly impacts quality of life, leading to reluctance toward surgery. Therefore, developing tumor-targeted therapies and alternative treatment strategies for MIBC is of great clinical significance. In this study, the IR780 iodide multifunctional dye is conjugated to alginate polysaccharide and developed a novel cisplatin-loaded nanoparticle. Then, the tumor targeting and antitumor effects of the nanoparticles are evaluated in vitro and in vivo. The results show that the nanoparticles have sufficient drug loading, enhanced tumor targeting, and good photothermal effect. Furthermore, they shows potential for tumor imaging and diagnostic applications in a mouse model of MIBC. This study proposes a potentially effective treatment for MIBC by combining near-infrared localized phototherapy with systemic chemotherapy to eliminate malignant tissue.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400575"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400575","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neoadjuvant chemotherapy combined with radical cystectomy is the standard treatment for muscle-invasive bladder cancer (MIBC). While cisplatin-based regimens reduce postoperative recurrence, their severe toxicity often limits clinical application. Moreover, the need for urinary diversion after radical cystectomy significantly impacts quality of life, leading to reluctance toward surgery. Therefore, developing tumor-targeted therapies and alternative treatment strategies for MIBC is of great clinical significance. In this study, the IR780 iodide multifunctional dye is conjugated to alginate polysaccharide and developed a novel cisplatin-loaded nanoparticle. Then, the tumor targeting and antitumor effects of the nanoparticles are evaluated in vitro and in vivo. The results show that the nanoparticles have sufficient drug loading, enhanced tumor targeting, and good photothermal effect. Furthermore, they shows potential for tumor imaging and diagnostic applications in a mouse model of MIBC. This study proposes a potentially effective treatment for MIBC by combining near-infrared localized phototherapy with systemic chemotherapy to eliminate malignant tissue.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.