Wei Jiang, William Newell, Jingjing Liu, Lucas Coppens, Khushboo Borah Slater, Huadong Peng, David Bell, Long Liu, Victoria Haritos, Rodrigo Ledesma-Amaro
{"title":"Insights into the methanol utilization capacity of Y. lipolytica and improvements through metabolic engineering.","authors":"Wei Jiang, William Newell, Jingjing Liu, Lucas Coppens, Khushboo Borah Slater, Huadong Peng, David Bell, Long Liu, Victoria Haritos, Rodrigo Ledesma-Amaro","doi":"10.1016/j.ymben.2025.03.014","DOIUrl":null,"url":null,"abstract":"<p><p>Methanol is a promising sustainable alternative feedstock for green biomanufacturing. The yeast Yarrowia lipolytica offers a versatile platform for producing a wide range of products but it cannot use methanol efficiently. In this study, we engineered Y. lipolytica to utilize methanol by overexpressing a methanol dehydrogenase, followed by the incorporation of methanol assimilation pathways from methylotrophic yeasts and bacteria. We also overexpressed the ribulose monophosphate (RuMP) and xylulose monophosphate (XuMP) pathways, which led to significant improvements in growth with methanol, reaching a consumption rate of 2.35 g/L in 24 hours and a 2.68-fold increase in biomass formation. Metabolomics and Metabolite Flux Analysis confirmed methanol assimilation and revealed an increase in reducing power. The strains were further engineered to produce the valuable heterologous product resveratrol from methanol as a co-substrate. Unlike traditional methanol utilization processes, which are often resource-intensive and environmentally damaging, our findings represent a significant advance in green chemistry by demonstrating the potential of Y. lipolytica for efficient use of methanol as a co-substrate for energy, biomass, and product formation. This work not only contributes to our understanding of methanol metabolism in non-methylotrophic organisms but also paves the way for achieving efficient synthetic methylotrophy towards green biomanufacturing.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.03.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Methanol is a promising sustainable alternative feedstock for green biomanufacturing. The yeast Yarrowia lipolytica offers a versatile platform for producing a wide range of products but it cannot use methanol efficiently. In this study, we engineered Y. lipolytica to utilize methanol by overexpressing a methanol dehydrogenase, followed by the incorporation of methanol assimilation pathways from methylotrophic yeasts and bacteria. We also overexpressed the ribulose monophosphate (RuMP) and xylulose monophosphate (XuMP) pathways, which led to significant improvements in growth with methanol, reaching a consumption rate of 2.35 g/L in 24 hours and a 2.68-fold increase in biomass formation. Metabolomics and Metabolite Flux Analysis confirmed methanol assimilation and revealed an increase in reducing power. The strains were further engineered to produce the valuable heterologous product resveratrol from methanol as a co-substrate. Unlike traditional methanol utilization processes, which are often resource-intensive and environmentally damaging, our findings represent a significant advance in green chemistry by demonstrating the potential of Y. lipolytica for efficient use of methanol as a co-substrate for energy, biomass, and product formation. This work not only contributes to our understanding of methanol metabolism in non-methylotrophic organisms but also paves the way for achieving efficient synthetic methylotrophy towards green biomanufacturing.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.