{"title":"Neuroprotective mechanisms of microglia in ischemic stroke: a review focused on mitochondria.","authors":"Jiale Gan, Xinyi Yang, Jianan Wu, Peian Liu, Zhaoyao Chen, Yue Hu, Wenlei Li, Yuan Zhu, Minghua Wu","doi":"10.1007/s11033-025-10469-4","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke encompasses a range of cerebrovascular disorders characterized by high morbidity, disability, and mortality, with ischemic stroke being the predominant type. This condition imposes significant socio-economic and healthcare burdens, and therapeutic options are currently limited. Microglia, the brain's resident immune cells, are rapidly activated following stroke-induced injury and play a pivotal role in the pathogenesis of neuroinflammation and ischemic tissues. Mitochondria participates in and influences the pathological processes of ischemic stroke, including oxidative stress, modulation of microglia phenotype, and axonal regenerative function, and is an essential and often overlooked target in the clinical management of stroke. This paper reviews recent advancements in research on microglia in ischemic stroke, specifically focusing on the contribution of the mitochondria, providing a reference for selecting therapeutic targets and guiding future research directions.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"355"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10469-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke encompasses a range of cerebrovascular disorders characterized by high morbidity, disability, and mortality, with ischemic stroke being the predominant type. This condition imposes significant socio-economic and healthcare burdens, and therapeutic options are currently limited. Microglia, the brain's resident immune cells, are rapidly activated following stroke-induced injury and play a pivotal role in the pathogenesis of neuroinflammation and ischemic tissues. Mitochondria participates in and influences the pathological processes of ischemic stroke, including oxidative stress, modulation of microglia phenotype, and axonal regenerative function, and is an essential and often overlooked target in the clinical management of stroke. This paper reviews recent advancements in research on microglia in ischemic stroke, specifically focusing on the contribution of the mitochondria, providing a reference for selecting therapeutic targets and guiding future research directions.
期刊介绍:
Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.