{"title":"Targeting therapy of PI3K/AKT signaling pathway via non-coding RNAs in diabetic retinopathy.","authors":"Shuai Lu, Jian Cai","doi":"10.1007/s00210-025-04093-z","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphoinositide 3-kinases (PI3Ks) are essential for maintaining glucose homeostasis. When these molecules malfunction, it can lead to increased blood glucose levels, which is the primary pathophysiological characteristic of diabetes. New data indicates that the PI3K/AKT signaling pathway is interacting reciprocally with non-coding RNAs (ncRNAs) such as miRNAs, long ncRNAs (lnc RNA), and circRNAs. Thus, it is clear that aberrant ncRNA regulation in the PI3K/AKT axis is connected to clinicopathological characteristics and is required for regulating biological processes. Diabetic retinopathy (DR) is a common complication of diabetes resulting from high blood sugar levels damaging the retina. Consequently, there is a greater need than ever for this prevention and treatment of disease. There has been a lot of interest in treating DR by targeting particular ncRNAs. The pathogenic functions of ncRNAs in DR are the main topic of this review. This review aims to explain the relationship between the PI3K/AKT signaling system and different miRNAs/lncRNAs/circRNAs and their significance in the biology of DR.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-04093-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphoinositide 3-kinases (PI3Ks) are essential for maintaining glucose homeostasis. When these molecules malfunction, it can lead to increased blood glucose levels, which is the primary pathophysiological characteristic of diabetes. New data indicates that the PI3K/AKT signaling pathway is interacting reciprocally with non-coding RNAs (ncRNAs) such as miRNAs, long ncRNAs (lnc RNA), and circRNAs. Thus, it is clear that aberrant ncRNA regulation in the PI3K/AKT axis is connected to clinicopathological characteristics and is required for regulating biological processes. Diabetic retinopathy (DR) is a common complication of diabetes resulting from high blood sugar levels damaging the retina. Consequently, there is a greater need than ever for this prevention and treatment of disease. There has been a lot of interest in treating DR by targeting particular ncRNAs. The pathogenic functions of ncRNAs in DR are the main topic of this review. This review aims to explain the relationship between the PI3K/AKT signaling system and different miRNAs/lncRNAs/circRNAs and their significance in the biology of DR.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.