Machine learning-assisted study on the thermal transport properties of two-dimensional M3(C6O6)2(M = Fe, Co, Ni) materials.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Meng-Jiao Teng, Li-Qin Deng, Pin-Zhen Jia, Wu-Xing Zhou
{"title":"Machine learning-assisted study on the thermal transport properties of two-dimensional M<sub>3</sub>(C<sub>6</sub>O<sub>6</sub>)<sub>2</sub>(M = Fe, Co, Ni) materials.","authors":"Meng-Jiao Teng, Li-Qin Deng, Pin-Zhen Jia, Wu-Xing Zhou","doi":"10.1088/1361-648X/adc77c","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional metal-organic frameworks (MOF) are widely used in electronic devices and energy storage due to their large surface area, abundant active sites, and tunable sizes. A deeper understanding of the thermal transport properties of two-dimensional MOF materials is essential for these applications. In this work, we systematically studied the thermal transport properties of M<sub>3</sub>(C<sub>6</sub>O<sub>6</sub>)<sub>2</sub>(M = Fe, Co, Ni) by using a machine learning interatomic potential method combined with the phonon Boltzmann transport equation. The results show that the lattice thermal conductivities of Fe<sub>3</sub>(C<sub>6</sub>O<sub>6</sub>)<sub>2</sub>, Co<sub>3</sub>(C<sub>6</sub>O<sub>6</sub>)<sub>2</sub>, and Ni<sub>3</sub>(C<sub>6</sub>O<sub>6</sub>)<sub>2</sub>at room temperature are 4.0 W mK<sup>-1</sup>, 5.5 W mK<sup>-1</sup>, and 5.8 W mK<sup>-1</sup>, respectively. The differences in thermal conductivity primarily arise from variations in phonon relaxation times, which can be elucidated by examining the three-phonon scattering phase space. Further analysis of bond strengths reveals that the strong bonding between Fe and O impedes phonon propagation through the oxygen atoms, resulting in lower lattice thermal conductivity. Our work provides a fundamental reference for understanding thermal transport in two-dimensional MOF.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc77c","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional metal-organic frameworks (MOF) are widely used in electronic devices and energy storage due to their large surface area, abundant active sites, and tunable sizes. A deeper understanding of the thermal transport properties of two-dimensional MOF materials is essential for these applications. In this work, we systematically studied the thermal transport properties of M3(C6O6)2(M = Fe, Co, Ni) by using a machine learning interatomic potential method combined with the phonon Boltzmann transport equation. The results show that the lattice thermal conductivities of Fe3(C6O6)2, Co3(C6O6)2, and Ni3(C6O6)2at room temperature are 4.0 W mK-1, 5.5 W mK-1, and 5.8 W mK-1, respectively. The differences in thermal conductivity primarily arise from variations in phonon relaxation times, which can be elucidated by examining the three-phonon scattering phase space. Further analysis of bond strengths reveals that the strong bonding between Fe and O impedes phonon propagation through the oxygen atoms, resulting in lower lattice thermal conductivity. Our work provides a fundamental reference for understanding thermal transport in two-dimensional MOF.

二维M3(C6O6)2 (M=Fe, Co, Ni)材料热输运性质的机器学习辅助研究。
二维金属有机框架(MOF)因其具有表面积大、活性位点丰富、尺寸可调等优点而广泛应用于电子器件和储能领域。深入了解二维MOF材料的热输运特性对于这些应用至关重要。本文采用机器学习原子间势(MLIP)方法结合声子玻尔兹曼输运方程(PBTE)系统地研究了M3(C6O6)2 (M = Fe, Co, Ni)的热输运性质。结果表明:Fe3(C6O6)2、Co3(C6O6)2和Ni3(C6O6)2在室温下的晶格导热系数分别为4.0 W/mK、5.5 W/mK和5.8 W/mK;热导率的差异主要是由声子弛豫时间的变化引起的,这可以通过检查三声子散射相空间来解释。进一步的键强度分析表明,铁和氧之间的强键阻碍了声子通过氧原子的传播,导致晶格导热系数降低。我们的工作为理解二维MOF中的热输运提供了基础参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信