Does the flavonoid quercetin influence the generalist-selective nature of mycorrhizal interactions in invasive and non-invasive native woody plants?

IF 3.8 2区 生物学 Q2 MYCOLOGY
Valentina Borda, Magali Burni, Noelia Cofré, Silvana Longo, Tomás Mansur, Gabriela Ortega, Carlos Urcelay
{"title":"Does the flavonoid quercetin influence the generalist-selective nature of mycorrhizal interactions in invasive and non-invasive native woody plants?","authors":"Valentina Borda, Magali Burni, Noelia Cofré, Silvana Longo, Tomás Mansur, Gabriela Ortega, Carlos Urcelay","doi":"10.1007/s00572-025-01196-6","DOIUrl":null,"url":null,"abstract":"<p><p>It has been suggested that invasive plant species are more generalist than non-invasive species in their interactions with arbuscular mycorrhizal fungi (AMF), allowing them to associate with novel AMF communities. There is emerging evidence suggesting that the flavonoid quercetin may play a role in regulating these interactions as a signaling compound. In this study, we experimentally grew three invasive alien and three non-invasive native woody species with AMF communities collected from within (though foreign to invasives) and outside their current distribution ranges. After 96 days, we: (a) assessed mycorrhizal colonization rates; (b) evaluated the impact of these interactions on plant performance (growth and phosphorus nutrition); and (c) tested whether these responses were influenced by the addition of quercetin to the plant growth medium. Our findings reveal that the invasive species exhibited mycorrhizal colonization when grown with both novel AMF communities and benefited from them in terms of phosphorus (P) nutrition. In contrast, two of the three non- invasive native species showed mycorrhizal colonization and enhanced P nutrition only with AMF from their current distribution range, but not with novel AMF from outside their range, suggesting selective behavior in their mycorrhizal interactions. The addition of quercetin did not have a strong effect on mycorrhizal colonization in either invasive or non-invasive native species. However, quercetin promoted moderate increases in P nutrition in the two non-invasive native species when grown with the novel AMF communities. Overall, the results suggest that invasive species are more generalist in their AM symbiosis than two of the three non-invasive species, and that the addition of quercetin had a limited, moderate influence on their AM interactions.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"25"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01196-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It has been suggested that invasive plant species are more generalist than non-invasive species in their interactions with arbuscular mycorrhizal fungi (AMF), allowing them to associate with novel AMF communities. There is emerging evidence suggesting that the flavonoid quercetin may play a role in regulating these interactions as a signaling compound. In this study, we experimentally grew three invasive alien and three non-invasive native woody species with AMF communities collected from within (though foreign to invasives) and outside their current distribution ranges. After 96 days, we: (a) assessed mycorrhizal colonization rates; (b) evaluated the impact of these interactions on plant performance (growth and phosphorus nutrition); and (c) tested whether these responses were influenced by the addition of quercetin to the plant growth medium. Our findings reveal that the invasive species exhibited mycorrhizal colonization when grown with both novel AMF communities and benefited from them in terms of phosphorus (P) nutrition. In contrast, two of the three non- invasive native species showed mycorrhizal colonization and enhanced P nutrition only with AMF from their current distribution range, but not with novel AMF from outside their range, suggesting selective behavior in their mycorrhizal interactions. The addition of quercetin did not have a strong effect on mycorrhizal colonization in either invasive or non-invasive native species. However, quercetin promoted moderate increases in P nutrition in the two non-invasive native species when grown with the novel AMF communities. Overall, the results suggest that invasive species are more generalist in their AM symbiosis than two of the three non-invasive species, and that the addition of quercetin had a limited, moderate influence on their AM interactions.

黄酮类槲皮素是否影响入侵和非入侵原生木本植物菌根相互作用的一般选择性?
研究表明,入侵植物在与丛枝菌根真菌(AMF)的相互作用中比非入侵物种更具通用性,这使得它们能够与新的AMF群落建立联系。越来越多的证据表明,类黄酮槲皮素可能作为一种信号化合物在调节这些相互作用中发挥作用。在本研究中,我们实验培养了三种外来入侵和三种非入侵的本地木本物种,并在其当前分布范围内(尽管是外来入侵)和外部收集了AMF群落。96天后,我们:(a)评估菌根定植率;(b)评估这些相互作用对植物性能(生长和磷营养)的影响;(c)测试了在植物生长培养基中添加槲皮素是否会影响这些反应。我们的研究结果表明,当与两种新的AMF群落一起生长时,入侵物种表现出菌根定植,并从它们的磷(P)营养方面受益。相比之下,三种非侵入性本地物种中的两种仅与其现有分布范围内的AMF定殖并增强P营养,而对其分布范围外的新AMF则没有,这表明它们在菌根相互作用中具有选择性行为。槲皮素的添加对入侵或非入侵的本地物种的菌根定植没有很强的影响。然而,槲皮素在与新的AMF群落一起生长时,促进了两种非侵入性本地物种P营养的适度增加。总体而言,研究结果表明,与非入侵种中的两种相比,入侵种在AM共生中更具通才性,槲皮素的添加对其AM相互作用的影响有限,适度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信