Cerium Oxide-Loaded Exosomes Derived From Regulatory T Cells Ameliorate Inflammatory Bowel Disease by Scavenging Reactive Oxygen Species and Modulating the Inflammatory Response.

IF 4.2 2区 医学 Q2 IMMUNOLOGY
Journal of Inflammation Research Pub Date : 2025-03-25 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S502388
Simei Yue, Lingjiao Gong, Yulin Tan, Xiaodan Zhang, Fei Liao
{"title":"Cerium Oxide-Loaded Exosomes Derived From Regulatory T Cells Ameliorate Inflammatory Bowel Disease by Scavenging Reactive Oxygen Species and Modulating the Inflammatory Response.","authors":"Simei Yue, Lingjiao Gong, Yulin Tan, Xiaodan Zhang, Fei Liao","doi":"10.2147/JIR.S502388","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Abnormal immune homeostasis, which leads to the accumulation of reactive oxygen species (ROS) and an inflammatory response, plays a crucial role in accelerating the progression of inflammatory bowel disease (IBD). The lack of targeted therapeutic strategies significantly hampers the efficacy of clinical treatments for IBD. This study presents cerium oxide nanoparticle-loaded regulatory T cell-derived exosomes (exo@nCeO) as innovative anti-inflammatory and antioxidant agents specifically designed to address the effects of immune dysregulation.</p><p><strong>Methods: </strong>In this work, the morphology and antioxidant properties of nano-cerium oxide were characterized using transmission electron microscopy, as well as hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl radical assays. Tumor necrosis factor-α and dextran sulfate sodium were employed to establish cellular and animal models of IBD. The impact of exo@nCeO on ROS scavenging and anti-inflammatory activity in intestinal epithelial cells was assessed using dihydroethidium and 2,7-dichlorodihydrofluorescein staining, Western blotting, and apoptosis flow cytometry analysis. Hematoxylin and eosin staining, along with immunohistochemistry and immunofluorescence staining, were utilized to evaluate intestinal epithelial inflammation and ROS levels in the IBD mouse model.</p><p><strong>Results: </strong>The findings demonstrate that exo@nCeO possesses augmented anti-inflammatory properties and ROS scavenging abilities in intestinal epithelial cells. In murine models of IBD, exo@nCeO effectively maintained the integrity of the intestinal epithelial barrier and impeded the progression of IBD.</p><p><strong>Conclusion: </strong>This study introduces a novel therapeutic approach for IBD and underscores a potential strategy for addressing diseases associated with inflammation and oxidative stress.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"4395-4408"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S502388","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Abnormal immune homeostasis, which leads to the accumulation of reactive oxygen species (ROS) and an inflammatory response, plays a crucial role in accelerating the progression of inflammatory bowel disease (IBD). The lack of targeted therapeutic strategies significantly hampers the efficacy of clinical treatments for IBD. This study presents cerium oxide nanoparticle-loaded regulatory T cell-derived exosomes (exo@nCeO) as innovative anti-inflammatory and antioxidant agents specifically designed to address the effects of immune dysregulation.

Methods: In this work, the morphology and antioxidant properties of nano-cerium oxide were characterized using transmission electron microscopy, as well as hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl radical assays. Tumor necrosis factor-α and dextran sulfate sodium were employed to establish cellular and animal models of IBD. The impact of exo@nCeO on ROS scavenging and anti-inflammatory activity in intestinal epithelial cells was assessed using dihydroethidium and 2,7-dichlorodihydrofluorescein staining, Western blotting, and apoptosis flow cytometry analysis. Hematoxylin and eosin staining, along with immunohistochemistry and immunofluorescence staining, were utilized to evaluate intestinal epithelial inflammation and ROS levels in the IBD mouse model.

Results: The findings demonstrate that exo@nCeO possesses augmented anti-inflammatory properties and ROS scavenging abilities in intestinal epithelial cells. In murine models of IBD, exo@nCeO effectively maintained the integrity of the intestinal epithelial barrier and impeded the progression of IBD.

Conclusion: This study introduces a novel therapeutic approach for IBD and underscores a potential strategy for addressing diseases associated with inflammation and oxidative stress.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信