Emerging Models of Care Using IT in Long-Term/Post-Acute Care: A Comparative Analysis of Human and AI-Driven Qualitative Insights.

IF 1.1 4区 医学 Q4 GERIATRICS & GERONTOLOGY
Gregory L Alexander, Anne Livingstone, Soojeong Han, Wendy Chapman, Tracy Comans, George Demiris, Malcolm Fisk, Mariann Fossum, Celeste Fung, Rosemary Kennedy, Terrence A O'Malley, Marjorie Skubic
{"title":"Emerging Models of Care Using IT in Long-Term/Post-Acute Care: A Comparative Analysis of Human and AI-Driven Qualitative Insights.","authors":"Gregory L Alexander, Anne Livingstone, Soojeong Han, Wendy Chapman, Tracy Comans, George Demiris, Malcolm Fisk, Mariann Fossum, Celeste Fung, Rosemary Kennedy, Terrence A O'Malley, Marjorie Skubic","doi":"10.3928/00989134-20250307-01","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>As the global population ages, long-term/post-acute care (LTPAC) systems face challenges in ensuring quality care for older adults with complex medical needs. Using health information technology (IT) is a promising strategy to address these challenges. However, evidence gaps remain regarding barriers and facilitators to technology integration in LTPAC. Thus, the current study explored barriers and facilitators to technology adoption in emerging models of care for older adults through the International Summit on Innovation and Technology for the Care of Older People (IS-ITCOP).</p><p><strong>Method: </strong>The IS-ITCOP Summit, held in June 2024, brought together 47 interdisciplinary experts from eight countries. Qualitative data were collected via facilitated discussion groups and analyzed using two approaches: human-coded thematic analysis and ChatGPT 4.0-driven analysis.</p><p><strong>Results: </strong>Shared themes included technology barriers, ethical considerations, workforce challenges, and patient-centered care. Human analysis emphasized abstract themes, whereas ChatGPT provided granular insights on emerging technologies.</p><p><strong>Conclusion: </strong>Combining human and artificial intelligence-driven analyses enriched understanding, highlighting opportunities and challenges for integrating IT into LTPAC systems. [<i>Journal of Gerontological Nursing, 51</i>(4), 6-11.].</p>","PeriodicalId":15848,"journal":{"name":"Journal of gerontological nursing","volume":"51 4","pages":"6-11"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of gerontological nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3928/00989134-20250307-01","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: As the global population ages, long-term/post-acute care (LTPAC) systems face challenges in ensuring quality care for older adults with complex medical needs. Using health information technology (IT) is a promising strategy to address these challenges. However, evidence gaps remain regarding barriers and facilitators to technology integration in LTPAC. Thus, the current study explored barriers and facilitators to technology adoption in emerging models of care for older adults through the International Summit on Innovation and Technology for the Care of Older People (IS-ITCOP).

Method: The IS-ITCOP Summit, held in June 2024, brought together 47 interdisciplinary experts from eight countries. Qualitative data were collected via facilitated discussion groups and analyzed using two approaches: human-coded thematic analysis and ChatGPT 4.0-driven analysis.

Results: Shared themes included technology barriers, ethical considerations, workforce challenges, and patient-centered care. Human analysis emphasized abstract themes, whereas ChatGPT provided granular insights on emerging technologies.

Conclusion: Combining human and artificial intelligence-driven analyses enriched understanding, highlighting opportunities and challenges for integrating IT into LTPAC systems. [Journal of Gerontological Nursing, 51(4), 6-11.].

在长期/急性后护理中使用IT的新兴护理模式:人类和人工智能驱动的定性见解的比较分析。
目的:随着全球人口老龄化,长期/急性后护理(LTPAC)系统在确保具有复杂医疗需求的老年人的高质量护理方面面临挑战。利用卫生信息技术(IT)是应对这些挑战的一项有希望的战略。然而,关于LTPAC中技术集成的障碍和促进因素,证据差距仍然存在。因此,本研究通过国际老年人护理创新与技术峰会(IS-ITCOP)探讨了在新兴的老年人护理模式中采用技术的障碍和促进因素。方法:IS-ITCOP峰会于2024年6月召开,汇集了来自8个国家的47位跨学科专家。定性数据通过促进讨论小组收集,并使用两种方法进行分析:人工编码主题分析和ChatGPT 4.0驱动分析。结果:共享的主题包括技术障碍、伦理考虑、劳动力挑战和以患者为中心的护理。人类的分析强调抽象的主题,而ChatGPT提供了对新兴技术的细粒度见解。结论:结合人类和人工智能驱动的分析丰富了理解,突出了将IT集成到LTPAC系统中的机遇和挑战。老年护理杂志,51(4),6-11。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
7.70%
发文量
98
审稿时长
6-12 weeks
期刊介绍: The Journal of Gerontological Nursing is a monthly, peer-reviewed journal publishing clinically relevant original articles on the practice of gerontological nursing across the continuum of care in a variety of health care settings, for more than 40 years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信