Lívia Rosa-Fernandes, Verônica Feijoli Santiago, Yasmin da Silva-Santos, Tissiane Tarosso Lopes, Erika Paula Machado Peixoto, Stefani Aparecida Minchio Rodrigues, Claudio Romero Farias Marinho, Giuseppe Palmisano, Sabrina Epiphanio
{"title":"Serum Proteomics of Experimental Malaria-Associated ARDS Reveals a Regulation of Acute-Phase Response Proteins.","authors":"Lívia Rosa-Fernandes, Verônica Feijoli Santiago, Yasmin da Silva-Santos, Tissiane Tarosso Lopes, Erika Paula Machado Peixoto, Stefani Aparecida Minchio Rodrigues, Claudio Romero Farias Marinho, Giuseppe Palmisano, Sabrina Epiphanio","doi":"10.1155/jimr/5642957","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria is a parasitic infectious disease considered a public health problem. Acute respiratory distress syndrome (ARDS) is a complication in malaria-infected individuals with a high mortality rate (80% to 100%) and can occur before, during, or after antimalarial drug treatment. Although inflammation and epithelial/endothelial injury pathways have been determined through these studies, specific circulating malaria-associated ARDS markers have not yet been established. We applied a quantitative mass spectrometry (MS)-based proteomic approach to identify altered molecular pathways in a mouse model of malaria-associated ARDS. Acute-phase response (APR) proteins were regulated in the ARDS group, suggesting their potential involvement in the development of the syndrome. They may serve as biomarkers when analyzed alongside other proteins that require further investigation. Additionally, the regulation of APR proteins in the ARDS group provides valuable insights into the pathophysiology of ARDS, contributing to a better understanding of the syndrome.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"5642957"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/jimr/5642957","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria is a parasitic infectious disease considered a public health problem. Acute respiratory distress syndrome (ARDS) is a complication in malaria-infected individuals with a high mortality rate (80% to 100%) and can occur before, during, or after antimalarial drug treatment. Although inflammation and epithelial/endothelial injury pathways have been determined through these studies, specific circulating malaria-associated ARDS markers have not yet been established. We applied a quantitative mass spectrometry (MS)-based proteomic approach to identify altered molecular pathways in a mouse model of malaria-associated ARDS. Acute-phase response (APR) proteins were regulated in the ARDS group, suggesting their potential involvement in the development of the syndrome. They may serve as biomarkers when analyzed alongside other proteins that require further investigation. Additionally, the regulation of APR proteins in the ARDS group provides valuable insights into the pathophysiology of ARDS, contributing to a better understanding of the syndrome.
期刊介绍:
Journal of Immunology Research is a peer-reviewed, Open Access journal that provides a platform for scientists and clinicians working in different areas of immunology and therapy. The journal publishes research articles, review articles, as well as clinical studies related to classical immunology, molecular immunology, clinical immunology, cancer immunology, transplantation immunology, immune pathology, immunodeficiency, autoimmune diseases, immune disorders, and immunotherapy.