{"title":"Spectro-temporal symmetry in action-detected optical spectroscopy: Highlighting excited-state dynamics in large systems.","authors":"K Charvátová, P Malý","doi":"10.1063/5.0255316","DOIUrl":null,"url":null,"abstract":"<p><p>Multidimensional optical spectroscopy observes transient excitation dynamics through time evolution of spectral correlations. Its action-detected variants offer several advantages over the coherent detection and are thus becoming increasingly widespread. Nevertheless, a drawback of action-detected spectra is the presence of a stationary background of the so-called incoherent mixing of excitations from independent states that resembles a product of ground-state absorption spectra and obscures the excited-state signal. This issue is especially problematic in fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) and fluorescence-detected pump-probe spectroscopy (F-PP) of extended systems, where large incoherent mixing arises from efficient exciton-exciton annihilation. In this work, we demonstrate on the example of F-2DES and F-PP an inherent spectro-temporal symmetry of action-detected spectra, which allows general, system-independent subtraction of any stationary signals including incoherent mixing. We derive the expressions for spectra with normal and reversed time ordering of the pulses, relating these to the symmetry of the system response. As we show both analytically and numerically, the difference signal constructed from spectra with normal and reversed pulse ordering is free of incoherent mixing and highlights the excited-state dynamics. We further verify the approach on the experimental F-PP spectra of a molecular squaraine heterodimer and the F-2DES spectra of the photosynthetic antenna light-harvesting complex 2 of purple bacteria. The approach is generally applicable to action-detected 2DES and pump-probe spectroscopy without experimental modifications and is independent of the studied system, enabling their application to large systems such as molecular complexes.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0255316","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multidimensional optical spectroscopy observes transient excitation dynamics through time evolution of spectral correlations. Its action-detected variants offer several advantages over the coherent detection and are thus becoming increasingly widespread. Nevertheless, a drawback of action-detected spectra is the presence of a stationary background of the so-called incoherent mixing of excitations from independent states that resembles a product of ground-state absorption spectra and obscures the excited-state signal. This issue is especially problematic in fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) and fluorescence-detected pump-probe spectroscopy (F-PP) of extended systems, where large incoherent mixing arises from efficient exciton-exciton annihilation. In this work, we demonstrate on the example of F-2DES and F-PP an inherent spectro-temporal symmetry of action-detected spectra, which allows general, system-independent subtraction of any stationary signals including incoherent mixing. We derive the expressions for spectra with normal and reversed time ordering of the pulses, relating these to the symmetry of the system response. As we show both analytically and numerically, the difference signal constructed from spectra with normal and reversed pulse ordering is free of incoherent mixing and highlights the excited-state dynamics. We further verify the approach on the experimental F-PP spectra of a molecular squaraine heterodimer and the F-2DES spectra of the photosynthetic antenna light-harvesting complex 2 of purple bacteria. The approach is generally applicable to action-detected 2DES and pump-probe spectroscopy without experimental modifications and is independent of the studied system, enabling their application to large systems such as molecular complexes.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.