{"title":"ACAT1 regulates tertiary lymphoid structures: A target for enhancing immunotherapy in non-small cell lung cancer.","authors":"Sophie O'Keefe, Qiwei Wang","doi":"10.1172/JCI191094","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC), the most common type of lung cancer, remains a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) have emerged as a promising therapy for NSCLC but only benefit a subset of patients. In this issue of the JCI, Jiao et al. revealed that acetyl-CoA acetyltransferase 1 (ACAT1) limited the efficacy of ICIs in NSCLC by impeding tertiary lymphoid structures (TLS) in the tumor microenvironment (TME). Targeting ACAT1 in tumor cells reduced mitochondrial hypersuccinylation and oxidative stress, enhancing TLS abundance and improving the efficacy of ICIs in preclinical murine models of NSCLC.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 7","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI191094","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Non-small cell lung cancer (NSCLC), the most common type of lung cancer, remains a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) have emerged as a promising therapy for NSCLC but only benefit a subset of patients. In this issue of the JCI, Jiao et al. revealed that acetyl-CoA acetyltransferase 1 (ACAT1) limited the efficacy of ICIs in NSCLC by impeding tertiary lymphoid structures (TLS) in the tumor microenvironment (TME). Targeting ACAT1 in tumor cells reduced mitochondrial hypersuccinylation and oxidative stress, enhancing TLS abundance and improving the efficacy of ICIs in preclinical murine models of NSCLC.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.