ACAT1 regulates tertiary lymphoid structures and correlates with immunotherapy response in non-small cell lung cancer.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Mengxia Jiao, Yifan Guo, Hongyu Zhang, Haoyu Wen, Peng Chen, Zhiqiang Wang, Baichao Yu, Kameina Zhuma, Yuchen Zhang, Jingbo Qie, Yun Xing, Pengyuan Zhao, Zihe Pan, Luman Wang, Dan Zhang, Fei Li, Yijiu Ren, Chang Chen, Yiwei Chu, Jie Gu, Ronghua Liu
{"title":"ACAT1 regulates tertiary lymphoid structures and correlates with immunotherapy response in non-small cell lung cancer.","authors":"Mengxia Jiao, Yifan Guo, Hongyu Zhang, Haoyu Wen, Peng Chen, Zhiqiang Wang, Baichao Yu, Kameina Zhuma, Yuchen Zhang, Jingbo Qie, Yun Xing, Pengyuan Zhao, Zihe Pan, Luman Wang, Dan Zhang, Fei Li, Yijiu Ren, Chang Chen, Yiwei Chu, Jie Gu, Ronghua Liu","doi":"10.1172/JCI181517","DOIUrl":null,"url":null,"abstract":"<p><p>Tertiary lymphoid structures (TLS) in the tumor microenvironment (TME) are emerging solid-tumor indicators of prognosis and response to immunotherapy. Considering that tumorigenesis requires metabolic reprogramming and subsequent TME remodeling, the discovery of TLS metabolic regulators is expected to produce immunotherapeutic targets. To identify such metabolic regulators, we constructed a metabolism-focused sgRNA library and performed an in vivo CRISPR screening in an orthotopic lung tumor mouse model. Combined with The Cancer Genome Atlas database analysis of TLS-related metabolic hub genes, we found that the loss of Acat1 in tumor cells sensitized tumors to anti-PD1 treatment, accompanied by increased TLS in the TME. Mechanistic studies revealed that ACAT1 resulted in mitochondrial protein hypersuccinylation in lung tumor cells and subsequently enhanced mitochondrial oxidative metabolism, which impeded TLS formation. Elimination of ROS by NAC or Acat1 knockdown promoted B cell aggregation and TLS construction. Consistently, data from tissue microassays of 305 patients with lung cancer showed that TLS were more abundant in non-small cell lung cancer (NSCLC) tissues with lower ACAT1 expression. Intratumoral ACAT1 expression was associated with poor immunotherapy outcomes in patients with NSCLC. In conclusion, our results identified ACAT1 as a metabolic regulator of TLS and a promising immunotherapeutic target in NSCLC.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 7","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI181517","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tertiary lymphoid structures (TLS) in the tumor microenvironment (TME) are emerging solid-tumor indicators of prognosis and response to immunotherapy. Considering that tumorigenesis requires metabolic reprogramming and subsequent TME remodeling, the discovery of TLS metabolic regulators is expected to produce immunotherapeutic targets. To identify such metabolic regulators, we constructed a metabolism-focused sgRNA library and performed an in vivo CRISPR screening in an orthotopic lung tumor mouse model. Combined with The Cancer Genome Atlas database analysis of TLS-related metabolic hub genes, we found that the loss of Acat1 in tumor cells sensitized tumors to anti-PD1 treatment, accompanied by increased TLS in the TME. Mechanistic studies revealed that ACAT1 resulted in mitochondrial protein hypersuccinylation in lung tumor cells and subsequently enhanced mitochondrial oxidative metabolism, which impeded TLS formation. Elimination of ROS by NAC or Acat1 knockdown promoted B cell aggregation and TLS construction. Consistently, data from tissue microassays of 305 patients with lung cancer showed that TLS were more abundant in non-small cell lung cancer (NSCLC) tissues with lower ACAT1 expression. Intratumoral ACAT1 expression was associated with poor immunotherapy outcomes in patients with NSCLC. In conclusion, our results identified ACAT1 as a metabolic regulator of TLS and a promising immunotherapeutic target in NSCLC.

ACAT1调节三级淋巴样结构并与非小细胞肺癌的免疫治疗反应相关。
肿瘤微环境(TME)中的三级淋巴样结构(TLS)是新兴的实体肿瘤预后和免疫治疗反应指标。考虑到肿瘤发生需要代谢重编程和随后的TME重塑,TLS代谢调节因子的发现有望产生免疫治疗靶点。为了识别这些代谢调节因子,我们构建了以代谢为重点的sgRNA文库,并在原位肺肿瘤小鼠模型中进行了体内CRISPR筛选。结合Cancer Genome Atlas数据库对TLS相关代谢枢纽基因的分析,我们发现肿瘤细胞中Acat1的缺失使肿瘤对抗pd1治疗敏感,同时TME中TLS升高。机制研究表明,ACAT1导致肺肿瘤细胞线粒体蛋白高琥珀酰化,进而增强线粒体氧化代谢,阻碍TLS的形成。NAC或Acat1敲低消除ROS可促进B细胞聚集和TLS构建。同样,来自305例肺癌患者的组织微分析数据显示,TLS在ACAT1表达较低的非小细胞肺癌(NSCLC)组织中更丰富。非小细胞肺癌患者肿瘤内ACAT1表达与不良免疫治疗结果相关。总之,我们的研究结果确定ACAT1是TLS的代谢调节因子,也是NSCLC中有希望的免疫治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信