Taeheon Lee, Chae Jeong Kim, Do-Hwan Lim, Young Sik Lee
{"title":"microRNA miR-315-5p regulates developmental growth in Drosophila wings by targeting S6k.","authors":"Taeheon Lee, Chae Jeong Kim, Do-Hwan Lim, Young Sik Lee","doi":"10.1111/1744-7917.70027","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue growth in Drosophila is regulated by various factors, with microRNAs (miRNAs) emerging as key players over the past decade. However, the precise roles of miRNAs in growth regulation remain incompletely understood. In this study, we explored the biological role of miR-315 in wing growth regulation. Inhibition of miR-315-5p activity using a miR-315 sponge led to an increase in wing size, whereas its overexpression resulted in reduced wing size, primarily through a decrease in wing cell size. We identified ribosomal protein kinase p-70-S6k (S6k) as a target of miR-315-5p in relation to wing growth control. Overexpression of miR-315 reduced both total S6k and phosphorylated S6k protein levels in Drosophila S2 cells and wing discs. Additionally, a luciferase reporter assay confirmed that miR-315-5p directly binds to the 3'-untranslated region of S6k. Consistently, RNAi-mediated depletion of S6k led to smaller wings, primarily due to a reduction in cell size. Notably, co-overexpression of active S6k rescued the wing defects caused by miR-315 overexpression. Overall, these findings demonstrate that miR-315 regulates wing growth by suppressing S6k expression.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.70027","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue growth in Drosophila is regulated by various factors, with microRNAs (miRNAs) emerging as key players over the past decade. However, the precise roles of miRNAs in growth regulation remain incompletely understood. In this study, we explored the biological role of miR-315 in wing growth regulation. Inhibition of miR-315-5p activity using a miR-315 sponge led to an increase in wing size, whereas its overexpression resulted in reduced wing size, primarily through a decrease in wing cell size. We identified ribosomal protein kinase p-70-S6k (S6k) as a target of miR-315-5p in relation to wing growth control. Overexpression of miR-315 reduced both total S6k and phosphorylated S6k protein levels in Drosophila S2 cells and wing discs. Additionally, a luciferase reporter assay confirmed that miR-315-5p directly binds to the 3'-untranslated region of S6k. Consistently, RNAi-mediated depletion of S6k led to smaller wings, primarily due to a reduction in cell size. Notably, co-overexpression of active S6k rescued the wing defects caused by miR-315 overexpression. Overall, these findings demonstrate that miR-315 regulates wing growth by suppressing S6k expression.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.