Yicun Yao, Peifen Lin, Dongping Ye, Haixiong Miao, Lin Cao, Peng Zhang, Jiake Xu, Libing Dai
{"title":"Enhanced Long-Term Antibacterial and Osteogenic Properties of Silver-Loaded Titanium Dioxide Nanotube Arrays for Implant Applications.","authors":"Yicun Yao, Peifen Lin, Dongping Ye, Haixiong Miao, Lin Cao, Peng Zhang, Jiake Xu, Libing Dai","doi":"10.2147/IJN.S493754","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study explored constructing silver-loaded titanium dioxide nanotube (TiO<sub>2</sub> NT) arrays on titanium surfaces using anodic oxidation combined with ion implantation. We assessed the cytocompatibility, antibacterial properties, and osteogenic potential of these silver-loaded TiO<sub>2</sub> NT arrays, along with the underlying mechanisms.</p><p><strong>Methods: </strong>We utilized anodization to create TiO<sub>2</sub> NT arrays and employed ion implantation to load silver ions, categorizing samples into groups NT-Ag-II-L, NT-Ag-II-M, and NT-Ag-II-H based on different Ag ion dosages. Characterization was performed via scanning electron microscopy (SEM). We evaluated cell compatibility and assessed the antimicrobial performance and Ag ion release profiles. The osteogenic ability of the samples was measured, and the effects on ERK5 and osteogenesis-related factors were analyzed. To clarify the role of ERK5 in osteogenesis, we inhibited the ERK5 pathway using BIX02188 and subsequently re-evaluated osteogenic capacity in co-cultured cells.</p><p><strong>Results: </strong>SEM analysis showed that in the NT-Ag-II-M group, Ag ions exhibited a flake-like distribution atop the TiO<sub>2</sub> NTs, while NT-Ag-II-L and NT-Ag-II-H groups presented clustered grid structures. Energy-filtered transmission electron microscopy (EFTEM) confirmed orderly Ag ion arrangements within the lumens of the nanotubes. Notably, the silver-loaded TiO<sub>2</sub> NT arrays did not inhibit MC3T3-E1 cell proliferation and enhanced early cellular adhesion. All samples displayed significant antimicrobial activity initially, which decreased after seven days; however, Ag ion release decreased gradually over the first 14 days before stabilizing. Additionally, the samples increased alkaline phosphatase activity, collagen secretion, and extracellular matrix mineralization, up-regulating ERK5 and other osteogenic factors. Inhibition of the ERK5 pathway suppressed the osteogenic capabilities of the samples.</p><p><strong>Conclusion: </strong>Anodization and ion implantation successfully produced silver-loaded TiO<sub>2</sub> NT arrays on titanium surfaces, demonstrating no cytotoxicity, sustained antimicrobial properties, and enhanced osteogenic potential. The antimicrobial effect relates to silver ion release, whereas osteogenesis is promoted by ERK5 signaling triggered by silver ions.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"3749-3764"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S493754","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study explored constructing silver-loaded titanium dioxide nanotube (TiO2 NT) arrays on titanium surfaces using anodic oxidation combined with ion implantation. We assessed the cytocompatibility, antibacterial properties, and osteogenic potential of these silver-loaded TiO2 NT arrays, along with the underlying mechanisms.
Methods: We utilized anodization to create TiO2 NT arrays and employed ion implantation to load silver ions, categorizing samples into groups NT-Ag-II-L, NT-Ag-II-M, and NT-Ag-II-H based on different Ag ion dosages. Characterization was performed via scanning electron microscopy (SEM). We evaluated cell compatibility and assessed the antimicrobial performance and Ag ion release profiles. The osteogenic ability of the samples was measured, and the effects on ERK5 and osteogenesis-related factors were analyzed. To clarify the role of ERK5 in osteogenesis, we inhibited the ERK5 pathway using BIX02188 and subsequently re-evaluated osteogenic capacity in co-cultured cells.
Results: SEM analysis showed that in the NT-Ag-II-M group, Ag ions exhibited a flake-like distribution atop the TiO2 NTs, while NT-Ag-II-L and NT-Ag-II-H groups presented clustered grid structures. Energy-filtered transmission electron microscopy (EFTEM) confirmed orderly Ag ion arrangements within the lumens of the nanotubes. Notably, the silver-loaded TiO2 NT arrays did not inhibit MC3T3-E1 cell proliferation and enhanced early cellular adhesion. All samples displayed significant antimicrobial activity initially, which decreased after seven days; however, Ag ion release decreased gradually over the first 14 days before stabilizing. Additionally, the samples increased alkaline phosphatase activity, collagen secretion, and extracellular matrix mineralization, up-regulating ERK5 and other osteogenic factors. Inhibition of the ERK5 pathway suppressed the osteogenic capabilities of the samples.
Conclusion: Anodization and ion implantation successfully produced silver-loaded TiO2 NT arrays on titanium surfaces, demonstrating no cytotoxicity, sustained antimicrobial properties, and enhanced osteogenic potential. The antimicrobial effect relates to silver ion release, whereas osteogenesis is promoted by ERK5 signaling triggered by silver ions.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.