HPLC-HRMS/MS and anti-inflammatory effects of bunya pine resin through multifaceted pathway modulation: NUMB/NOTCH1/HES1/mTOR/ PI3K/HMGB1 signaling cascades.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Dalia E Ali, Sherouk Hussein Sweilam, Ahmed M Atwa, Ali M Elgindy, Aya M Mustafa, Manar M Esmail, Mahmoud Abdelrahman Alkabbani, Mohamed Magdy Senna, Riham A El-Shiekh
{"title":"HPLC-HRMS/MS and anti-inflammatory effects of bunya pine resin through multifaceted pathway modulation: NUMB/NOTCH1/HES1/mTOR/ PI3K/HMGB1 signaling cascades.","authors":"Dalia E Ali, Sherouk Hussein Sweilam, Ahmed M Atwa, Ali M Elgindy, Aya M Mustafa, Manar M Esmail, Mahmoud Abdelrahman Alkabbani, Mohamed Magdy Senna, Riham A El-Shiekh","doi":"10.1007/s10787-025-01660-x","DOIUrl":null,"url":null,"abstract":"<p><p>The oleoresins of the Araucaria bidwillii Hook. (A.B.) are commonly used for the treatment of several conditions. However, the full phytochemical profile of its active compounds and its mechanism of action to protect the liver from toxicity remain unclear. The purpose of this research was to investigate the complete set of data relating to the A.B. active metabolites and explore the hepatoprotective properties of AB ethanolic extract on MTX-induced liver injury mainly due to its anti-inflammatory role. Hepatic markers, oxidative stress, inflammatory mediators, the NOTCH/NICD signaling cascade, HES1 expression, HMGB1/TLR4, and the PI3K/mTOR axis were assessed. HPLC-HRMS/MS analysis of A.B. led to the annotation of fifteen compounds from different classes, where diterpenes are the dominant class. Additionally, A.B. (100 and 200 mg/kg) significantly decreased hepatic markers, oxidative stress, and inflammatory mediators. Moreover, the extract significantly increased NOTCH pathway stimulation and HES1 expression, accompanied by a significant decline in the NUMB and HMGB1/TLR4 axes. In addition, it significantly inhibited the PI3K/mTOR pathway, with a prominent effect at the higher dose. This study presents A.B. as a promising hepatoprotective agent through stimulation of the NOTCH pathway and inhibition of the HMGB1/TLR4 pathway, as well as the PI3K/mTOR/NF-κB axis, besides its antioxidant and anti-inflammatory effects.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01660-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The oleoresins of the Araucaria bidwillii Hook. (A.B.) are commonly used for the treatment of several conditions. However, the full phytochemical profile of its active compounds and its mechanism of action to protect the liver from toxicity remain unclear. The purpose of this research was to investigate the complete set of data relating to the A.B. active metabolites and explore the hepatoprotective properties of AB ethanolic extract on MTX-induced liver injury mainly due to its anti-inflammatory role. Hepatic markers, oxidative stress, inflammatory mediators, the NOTCH/NICD signaling cascade, HES1 expression, HMGB1/TLR4, and the PI3K/mTOR axis were assessed. HPLC-HRMS/MS analysis of A.B. led to the annotation of fifteen compounds from different classes, where diterpenes are the dominant class. Additionally, A.B. (100 and 200 mg/kg) significantly decreased hepatic markers, oxidative stress, and inflammatory mediators. Moreover, the extract significantly increased NOTCH pathway stimulation and HES1 expression, accompanied by a significant decline in the NUMB and HMGB1/TLR4 axes. In addition, it significantly inhibited the PI3K/mTOR pathway, with a prominent effect at the higher dose. This study presents A.B. as a promising hepatoprotective agent through stimulation of the NOTCH pathway and inhibition of the HMGB1/TLR4 pathway, as well as the PI3K/mTOR/NF-κB axis, besides its antioxidant and anti-inflammatory effects.

HPLC-HRMS/MS与松脂抗炎作用的多途径调控:NUMB/NOTCH1/HES1/mTOR/ PI3K/HMGB1信号级联。
木香树的油树脂。(A.B.)通常用于治疗几种疾病。然而,其活性化合物的完整植物化学特征及其保护肝脏免受毒性的作用机制仍不清楚。本研究的目的是研究AB活性代谢物的完整数据,并探讨AB乙醇提取物对mtx诱导的肝损伤的保护作用,主要是由于其抗炎作用。评估肝脏标志物、氧化应激、炎症介质、NOTCH/NICD信号级联、HES1表达、HMGB1/TLR4和PI3K/mTOR轴。通过HPLC-HRMS/MS分析,得到了15个不同类的化合物,其中二萜为优势类。此外,A.B.(100和200 mg/kg)显著降低肝脏标志物、氧化应激和炎症介质。此外,提取物显著增加NOTCH通路刺激和HES1表达,同时NUMB和HMGB1/TLR4轴显著下降。此外,它还能显著抑制PI3K/mTOR通路,且在高剂量下效果显著。本研究表明,除了具有抗氧化和抗炎作用外,黄芪还可刺激NOTCH通路,抑制HMGB1/TLR4通路,以及PI3K/mTOR/NF-κB轴,从而成为一种有前景的肝保护剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信