Effects of simulated intraoral temperatures and wet environments on the stress relaxation properties of thermoplastic aligner materials.

IF 2.4 2区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Xinyu Cui, Fengru Li, Jiuhui Jiang
{"title":"Effects of simulated intraoral temperatures and wet environments on the stress relaxation properties of thermoplastic aligner materials.","authors":"Xinyu Cui, Fengru Li, Jiuhui Jiang","doi":"10.1186/s13005-025-00497-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Thermoplastic aligner materials are made from copolymers, and in the oral environment, their mechanical properties change over time. The effects of intraoral temperatures and the wet environments on the stress relaxation properties of these materials remain poorly understood. The aim of this study is to investigate the separate effects of the temperature and wet environment on the stress relaxation behavior of five available commercial orthodontic thermoplastic materials consisting of three chemical compositions.</p><p><strong>Method: </strong>A modified temperature-controlled water bath system was used to eliminate the confounding effect of water. The residual stresses of five commercial orthodontic thermoplastic materials with different chemical compositions (Biolon, Duran, and Erkodur (PETG), Essix ACE (copolyester), and Essix C + (PP/PE)) were examined at room temperature (22 °C), 37 °C, and 55 °C. After the materials were immersed in deionized water and artificial saliva for two weeks (37 °C), the 30 min stress relaxation curves of the five materials were measured.</p><p><strong>Results: </strong>Compared with those at room temperature (22 °C), the stress relaxation rates of the five materials increased and ranged from 0.7% to 18.11% at 37 °C and from 20.54% to 88.31% at 55 °C, and Ekodur and Essix ACEs exhibited relatively smaller increases. After two weeks of immersion in deionized water and artificial saliva, the stress relaxation rate of Essix ACE significantly decreased (p < 0.05), whereas that of the other four materials did not significantly change.</p><p><strong>Conclusion: </strong>Elevated intraoral temperature accelerated the stress relaxation of thermoplastic aligner materials. The intraoral liquid immersion had no accelerating effect on the stress relaxation of any of the tested materials and even had a significant decelerating effect on that of Essix ACE.</p>","PeriodicalId":12994,"journal":{"name":"Head & Face Medicine","volume":"21 1","pages":"23"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head & Face Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13005-025-00497-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Thermoplastic aligner materials are made from copolymers, and in the oral environment, their mechanical properties change over time. The effects of intraoral temperatures and the wet environments on the stress relaxation properties of these materials remain poorly understood. The aim of this study is to investigate the separate effects of the temperature and wet environment on the stress relaxation behavior of five available commercial orthodontic thermoplastic materials consisting of three chemical compositions.

Method: A modified temperature-controlled water bath system was used to eliminate the confounding effect of water. The residual stresses of five commercial orthodontic thermoplastic materials with different chemical compositions (Biolon, Duran, and Erkodur (PETG), Essix ACE (copolyester), and Essix C + (PP/PE)) were examined at room temperature (22 °C), 37 °C, and 55 °C. After the materials were immersed in deionized water and artificial saliva for two weeks (37 °C), the 30 min stress relaxation curves of the five materials were measured.

Results: Compared with those at room temperature (22 °C), the stress relaxation rates of the five materials increased and ranged from 0.7% to 18.11% at 37 °C and from 20.54% to 88.31% at 55 °C, and Ekodur and Essix ACEs exhibited relatively smaller increases. After two weeks of immersion in deionized water and artificial saliva, the stress relaxation rate of Essix ACE significantly decreased (p < 0.05), whereas that of the other four materials did not significantly change.

Conclusion: Elevated intraoral temperature accelerated the stress relaxation of thermoplastic aligner materials. The intraoral liquid immersion had no accelerating effect on the stress relaxation of any of the tested materials and even had a significant decelerating effect on that of Essix ACE.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Head & Face Medicine
Head & Face Medicine DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
4.70
自引率
3.30%
发文量
32
审稿时长
>12 weeks
期刊介绍: Head & Face Medicine is a multidisciplinary open access journal that publishes basic and clinical research concerning all aspects of cranial, facial and oral conditions. The journal covers all aspects of cranial, facial and oral diseases and their management. It has been designed as a multidisciplinary journal for clinicians and researchers involved in the diagnostic and therapeutic aspects of diseases which affect the human head and face. The journal is wide-ranging, covering the development, aetiology, epidemiology and therapy of head and face diseases to the basic science that underlies these diseases. Management of head and face diseases includes all aspects of surgical and non-surgical treatments including psychopharmacological therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信