Preliminary results of the EPIDIA4Kids study on brain function in children: multidimensional ADHD-related symptomatology screening using multimodality biometry.
{"title":"Preliminary results of the EPIDIA4Kids study on brain function in children: multidimensional ADHD-related symptomatology screening using multimodality biometry.","authors":"Yanice Guigou, Alexandre Hennequin, Théo Marchand, Mouna Chebli, Lucie Isoline Pisella, Pascal Staccini, Vanessa Douet Vannucci","doi":"10.3389/fpsyt.2025.1466107","DOIUrl":null,"url":null,"abstract":"<p><p>Attention-deficit hyperactivity disorder (ADHD) occurs in 5.9% of youth, impacting their health and social conditions often across their lifespan. Currently, early diagnosis is constrained by clinical complexity and limited resources of professionals to conduct evaluations. Scalable methods for ADHD screening are thus needed. Recently, digital epidemiology and biometry, such as the visual, emotional, or digit pathway, have examined brain dysfunction in ADHD individuals. However, whether biometry can support screening for ADHD symptoms using a multimodal tech system is still unknown. The EPIDIA4Kids study aims to create objective measures, i.e., biometrics, that will provide a comprehensive transdiagnostic picture of individuals with ADHD, aligning with current evidence for comorbid presentations. Twenty-four children aged 7 to 12 years performed gamified tasks on an unmodified tablet using the XAI4Kids<sup>®</sup> multimodal system, which allows extraction of biometrics (eye-, digit-, and emotion-tracking) from video and touch events using machine learning. Neuropsychological assessments and questionnaires were administered to provide ADHD-related measures. Each ADHD-related measure was evaluated with each biometric using linear mixed-effects models. In contrast to neuro-assessments, only two digit-tracking features had age and sex effects (p < 0.001) among the biometrics. Biometric constructs were predictors of working memory (p < 0.0001) and processing speed (p < 0.0001) and, to a lower extent, visuo-spatial skills (p = 0.003), inattention (p = 0.04), or achievement (p = 0.04), where multimodalities are crucial to capture several symptomatology dimensions. These results illustrate the potential of multimodality biometry gathered from a tablet as a viable and scalable transdiagnostic approach for screening ADHD symptomatology and improving accessibility to specialized professionals. Larger populations including clinically diagnosed ADHD will be needed for further validation.</p>","PeriodicalId":12605,"journal":{"name":"Frontiers in Psychiatry","volume":"16 ","pages":"1466107"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fpsyt.2025.1466107","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Attention-deficit hyperactivity disorder (ADHD) occurs in 5.9% of youth, impacting their health and social conditions often across their lifespan. Currently, early diagnosis is constrained by clinical complexity and limited resources of professionals to conduct evaluations. Scalable methods for ADHD screening are thus needed. Recently, digital epidemiology and biometry, such as the visual, emotional, or digit pathway, have examined brain dysfunction in ADHD individuals. However, whether biometry can support screening for ADHD symptoms using a multimodal tech system is still unknown. The EPIDIA4Kids study aims to create objective measures, i.e., biometrics, that will provide a comprehensive transdiagnostic picture of individuals with ADHD, aligning with current evidence for comorbid presentations. Twenty-four children aged 7 to 12 years performed gamified tasks on an unmodified tablet using the XAI4Kids® multimodal system, which allows extraction of biometrics (eye-, digit-, and emotion-tracking) from video and touch events using machine learning. Neuropsychological assessments and questionnaires were administered to provide ADHD-related measures. Each ADHD-related measure was evaluated with each biometric using linear mixed-effects models. In contrast to neuro-assessments, only two digit-tracking features had age and sex effects (p < 0.001) among the biometrics. Biometric constructs were predictors of working memory (p < 0.0001) and processing speed (p < 0.0001) and, to a lower extent, visuo-spatial skills (p = 0.003), inattention (p = 0.04), or achievement (p = 0.04), where multimodalities are crucial to capture several symptomatology dimensions. These results illustrate the potential of multimodality biometry gathered from a tablet as a viable and scalable transdiagnostic approach for screening ADHD symptomatology and improving accessibility to specialized professionals. Larger populations including clinically diagnosed ADHD will be needed for further validation.
期刊介绍:
Frontiers in Psychiatry publishes rigorously peer-reviewed research across a wide spectrum of translational, basic and clinical research. Field Chief Editor Stefan Borgwardt at the University of Basel is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
The journal''s mission is to use translational approaches to improve therapeutic options for mental illness and consequently to improve patient treatment outcomes.