{"title":"Composite nanoparticle-based vesicles achieve enhanced delivery effects of the natural plant extract of the root, stem, and fruit.","authors":"Xiaodong Zhuang, Ting Ma, Risheng Liu, Xingyue Fang, Liangjiu Huang","doi":"10.3389/fchem.2025.1552298","DOIUrl":null,"url":null,"abstract":"<p><p>The extract of medicinal plants is increasingly popular around the whole world due to its attractive therapeutic effects. However, the bioavailability of the extract of bioactive compounds was barely satisfactory due to its easily deactivated and untargeted properties. The use of nanotechnology to develop novel carrier delivery techniques for bioactive extracts has been proven to have significant potential and provides an amazing improvement in the therapeutic effect. Calcium carbonate nanoparticles (CaCO<sub>3</sub> NPs), as representative biodegradable materials, are well recognized as environmentally responsive delivery vehicles for disease treatment. In this study, extracts of the root of ginseng, the fruit of <i>Alpinia oxyphylla</i> Miq., and the stem of <i>Millettia speciosa</i> Champ. were developed as a CaCO<sub>3</sub> nanoparticle loading drug. All of the three composite nanoparticles exhibited spherical shapes with a narrow size distribution. Notably, the ginseng extract-loaded CaCO<sub>3</sub> NPs hold a relatively higher entrapment efficiency of up to 55.2% ± 6.7% and excellent release performance under acidic conditions (pH = 5.5). Moreover, intravenous injection of ginseng CaCO<sub>3</sub> NPs resulted in significantly enhanced therapeutic effects in the treatment of glioma. The results demonstrate that CaCO<sub>3</sub>-based composite nanoparticles are ideal for the delivery of plant extracts, and the systems are expected to be effective against various types of diseases in the future.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1552298"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1552298","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The extract of medicinal plants is increasingly popular around the whole world due to its attractive therapeutic effects. However, the bioavailability of the extract of bioactive compounds was barely satisfactory due to its easily deactivated and untargeted properties. The use of nanotechnology to develop novel carrier delivery techniques for bioactive extracts has been proven to have significant potential and provides an amazing improvement in the therapeutic effect. Calcium carbonate nanoparticles (CaCO3 NPs), as representative biodegradable materials, are well recognized as environmentally responsive delivery vehicles for disease treatment. In this study, extracts of the root of ginseng, the fruit of Alpinia oxyphylla Miq., and the stem of Millettia speciosa Champ. were developed as a CaCO3 nanoparticle loading drug. All of the three composite nanoparticles exhibited spherical shapes with a narrow size distribution. Notably, the ginseng extract-loaded CaCO3 NPs hold a relatively higher entrapment efficiency of up to 55.2% ± 6.7% and excellent release performance under acidic conditions (pH = 5.5). Moreover, intravenous injection of ginseng CaCO3 NPs resulted in significantly enhanced therapeutic effects in the treatment of glioma. The results demonstrate that CaCO3-based composite nanoparticles are ideal for the delivery of plant extracts, and the systems are expected to be effective against various types of diseases in the future.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.