{"title":"Potential role of indole-3-propionic acid in tuberculosis: current perspectives and future prospects.","authors":"Tejaswini Baral, Aieshel Serafin Johnson, Mazhuvancherry Kesavan Unnikrishnan, Mohan K Manu, Kavitha Saravu, Chandrashekar Udyavara Kudru, Suhaj Abdulsalim, Jitendra Singh, Chiranjay Mukhopadhyay, Mahadev Rao, Sonal Sekhar Miraj","doi":"10.1080/14728222.2025.2482548","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Indole-3-propionic acid (IPA), a tryptophan catabolite derived from gut bacterial metabolism, has been identified as a functional link between the gut microbiome and tuberculosis.</p><p><strong>Area covered: </strong>IPA has gained ample attention over the past two decades on account of its multiple physiological roles, besides being both detectable and quantifiable. IPA is well studied across different health conditions, including cardiovascular and neurological conditions. IPA blocks tryptophan synthesis in Mycobacterium by binding to the allosteric tryptophan-binding site of TrpE, thereby threatening Mycobacterium survival due to tryptophan deficit.</p><p><strong>Expert opinion: </strong>Characterizing IPA would enable its use as a tool to investigate the pathophysiology of tuberculosis. Integrating 'OMICS' techniques (through next-generation sequencing) along with targeted microbial metabolomics may help explore the possible association of serum IPA levels with TB in patients. This will aid in identifying IPA-producing gut microbes and selecting probiotic strains as a microbiome-targeting adjunct therapy, eventually enhancing our understanding of the molecular dynamics of the pathophysiology of tuberculosis in the context of the microbiome.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":" ","pages":"171-178"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2025.2482548","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Indole-3-propionic acid (IPA), a tryptophan catabolite derived from gut bacterial metabolism, has been identified as a functional link between the gut microbiome and tuberculosis.
Area covered: IPA has gained ample attention over the past two decades on account of its multiple physiological roles, besides being both detectable and quantifiable. IPA is well studied across different health conditions, including cardiovascular and neurological conditions. IPA blocks tryptophan synthesis in Mycobacterium by binding to the allosteric tryptophan-binding site of TrpE, thereby threatening Mycobacterium survival due to tryptophan deficit.
Expert opinion: Characterizing IPA would enable its use as a tool to investigate the pathophysiology of tuberculosis. Integrating 'OMICS' techniques (through next-generation sequencing) along with targeted microbial metabolomics may help explore the possible association of serum IPA levels with TB in patients. This will aid in identifying IPA-producing gut microbes and selecting probiotic strains as a microbiome-targeting adjunct therapy, eventually enhancing our understanding of the molecular dynamics of the pathophysiology of tuberculosis in the context of the microbiome.
期刊介绍:
The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials.
The Editors welcome:
Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development.
Articles should not include clinical information including specific drugs and clinical trials.
Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs.
The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.