The regulatory role and mechanism of TRPV3 on apoptosis and inflammation in osteoarthritis.

IF 3.8 3区 生物学 Q1 BIOLOGY
EXCLI Journal Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.17179/excli2024-8109
Sahar Ghafari, Amin Moqadami, Mohammad Khalaj-Kondori
{"title":"The regulatory role and mechanism of TRPV3 on apoptosis and inflammation in osteoarthritis.","authors":"Sahar Ghafari, Amin Moqadami, Mohammad Khalaj-Kondori","doi":"10.17179/excli2024-8109","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is one of the most common forms of degenerative joint disease characterized by persistent pain, inflammation of the joints, and restricted range of motion among the elderly worldwide. Interleukin-1 beta (IL-1β) is increased in the injured joints and contributes to the OA pathobiology by inducing chondrocyte apoptosis and inflammation. Transient receptor potential (TRP) ion channels have recently been reported as potential players in the modulation of apoptosis and inflammation. Here, we aimed to understand the regulatory role and effect of TRPV3 on apoptosis and inflammation in osteoarthritis by using C28/I2 chondrocyte cells as a model. Chondrocytes were transfected with TRPV3-specific siRNA for 24 hours and then stimulated with IL-1β in vitro. Cell cycle progression and apoptosis were evaluated with flow cytometry. The levels of TRPV3, apoptotic (Bax, Caspase-3, and Bcl-2), and inflammatory (iNOS, COX-2) genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and confirmed with western blot. Treatment of the C28/I2 chondrocyte cells with IL-1β resulted in the over-expression of TRPV3, induction of apoptosis, and over-expression of inflammation indices. Knockdown of TRPV3 significantly reduced the expression of Bax and Caspase 3 proapoptotic factors while increasing the expression of the Bcl-2 antiapoptotic factor in the mRNA and protein levels in the IL-1β-stimulated cells. Its knockdown also decreased the expression of the inflammatory factors iNOS and COX-2 in mRNA and protein levels, confirming that TRPV3 knockdown hinders apoptosis and inflammation in IL-1β-stimulated chondrocytes. In conclusion, we demonstrated that si-TRPV3 treatment significantly mitigates IL-1β-related effects on the C28/I2 chondrocyte cells. These findings suggested that TRPV3 could be an effective target for the treatment of OA. See also the graphical abstract(Fig. 1).</p>","PeriodicalId":12247,"journal":{"name":"EXCLI Journal","volume":"24 ","pages":"325-338"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EXCLI Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.17179/excli2024-8109","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is one of the most common forms of degenerative joint disease characterized by persistent pain, inflammation of the joints, and restricted range of motion among the elderly worldwide. Interleukin-1 beta (IL-1β) is increased in the injured joints and contributes to the OA pathobiology by inducing chondrocyte apoptosis and inflammation. Transient receptor potential (TRP) ion channels have recently been reported as potential players in the modulation of apoptosis and inflammation. Here, we aimed to understand the regulatory role and effect of TRPV3 on apoptosis and inflammation in osteoarthritis by using C28/I2 chondrocyte cells as a model. Chondrocytes were transfected with TRPV3-specific siRNA for 24 hours and then stimulated with IL-1β in vitro. Cell cycle progression and apoptosis were evaluated with flow cytometry. The levels of TRPV3, apoptotic (Bax, Caspase-3, and Bcl-2), and inflammatory (iNOS, COX-2) genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and confirmed with western blot. Treatment of the C28/I2 chondrocyte cells with IL-1β resulted in the over-expression of TRPV3, induction of apoptosis, and over-expression of inflammation indices. Knockdown of TRPV3 significantly reduced the expression of Bax and Caspase 3 proapoptotic factors while increasing the expression of the Bcl-2 antiapoptotic factor in the mRNA and protein levels in the IL-1β-stimulated cells. Its knockdown also decreased the expression of the inflammatory factors iNOS and COX-2 in mRNA and protein levels, confirming that TRPV3 knockdown hinders apoptosis and inflammation in IL-1β-stimulated chondrocytes. In conclusion, we demonstrated that si-TRPV3 treatment significantly mitigates IL-1β-related effects on the C28/I2 chondrocyte cells. These findings suggested that TRPV3 could be an effective target for the treatment of OA. See also the graphical abstract(Fig. 1).

求助全文
约1分钟内获得全文 求助全文
来源期刊
EXCLI Journal
EXCLI Journal BIOLOGY-
CiteScore
8.00
自引率
2.20%
发文量
65
审稿时长
6-12 weeks
期刊介绍: EXCLI Journal publishes original research reports, authoritative reviews and case reports of experimental and clinical sciences. The journal is particularly keen to keep a broad view of science and technology, and therefore welcomes papers which bridge disciplines and may not suit the narrow specialism of other journals. Although the general emphasis is on biological sciences, studies from the following fields are explicitly encouraged (alphabetical order): aging research, behavioral sciences, biochemistry, cell biology, chemistry including analytical chemistry, clinical and preclinical studies, drug development, environmental health, ergonomics, forensic medicine, genetics, hepatology and gastroenterology, immunology, neurosciences, occupational medicine, oncology and cancer research, pharmacology, proteomics, psychiatric research, psychology, systems biology, toxicology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信