Age as a limiting factor for effectiveness of photostimulation of brain drainage and cognitive functions.

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Terskov Andrey, Shirokov Alexander, Blokhina Inna, Zlatogorskaya Daria, Adushkina Viktoria, Semiachkina-Glushkovskaia Anastasiia, Atul Kumar, Fedosov Ivan, Evsukova Arina, Semyachkina-Glushkovskaya Oxana
{"title":"Age as a limiting factor for effectiveness of photostimulation of brain drainage and cognitive functions.","authors":"Terskov Andrey, Shirokov Alexander, Blokhina Inna, Zlatogorskaya Daria, Adushkina Viktoria, Semiachkina-Glushkovskaia Anastasiia, Atul Kumar, Fedosov Ivan, Evsukova Arina, Semyachkina-Glushkovskaya Oxana","doi":"10.1007/s12200-025-00149-3","DOIUrl":null,"url":null,"abstract":"<p><p>The progressive number of old adults with cognitive impairment worldwide and the lack of effective pharmacologic therapies require the development of non-pharmacologic strategies. The photobiomodulation (PBM) is a promising method in prevention of early or mild age-related cognitive impairments. However, it remains unclear the efficacy of PBM for old patients with significant age-related cognitive dysfunction. In our study on male mice, we show a gradual increase in the brain amyloid beta (Aβ) levels and a decrease in brain drainage with age, which, however, is associated with a decline in cognitive function only in old (24 months of age) mice but not in middle-aged (12 months of age) and young (3 month of age) animals. These age-related features are accompanied by the development of hyperplasia of the meningeal lymphatic vessels (MLVs) in old mice underlying the decrease in brain drainage. PBM improves cognitive training exercises and Aβ clearance only in young and middle-aged mice, while old animals are not sensitive to PBM. These results clearly demonstrate that the PBM effects on cognitive function are correlated with age-mediated changes in the MLV network and may be effective if the MLV function is preserved. These findings expand fundamental knowledge about age differences in the effectiveness of PBM for improvement of cognitive functions and Aβ clearance as well as about the lymphatic mechanisms responsible for age decline in sensitivity to the therapeutic PBM effects.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"6"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-025-00149-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The progressive number of old adults with cognitive impairment worldwide and the lack of effective pharmacologic therapies require the development of non-pharmacologic strategies. The photobiomodulation (PBM) is a promising method in prevention of early or mild age-related cognitive impairments. However, it remains unclear the efficacy of PBM for old patients with significant age-related cognitive dysfunction. In our study on male mice, we show a gradual increase in the brain amyloid beta (Aβ) levels and a decrease in brain drainage with age, which, however, is associated with a decline in cognitive function only in old (24 months of age) mice but not in middle-aged (12 months of age) and young (3 month of age) animals. These age-related features are accompanied by the development of hyperplasia of the meningeal lymphatic vessels (MLVs) in old mice underlying the decrease in brain drainage. PBM improves cognitive training exercises and Aβ clearance only in young and middle-aged mice, while old animals are not sensitive to PBM. These results clearly demonstrate that the PBM effects on cognitive function are correlated with age-mediated changes in the MLV network and may be effective if the MLV function is preserved. These findings expand fundamental knowledge about age differences in the effectiveness of PBM for improvement of cognitive functions and Aβ clearance as well as about the lymphatic mechanisms responsible for age decline in sensitivity to the therapeutic PBM effects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信