Fan Ding, Weidong Zhang, Ting Liu, Xing Rong, Yajun Cui, Lingxiao Meng, Luxu Wang, Bo Liu, Minqi Li
{"title":"MK-4 Ameliorates Diabetic Osteoporosis in Angiogenesis-Dependent Bone Formation by Promoting Mitophagy in Endothelial Cells.","authors":"Fan Ding, Weidong Zhang, Ting Liu, Xing Rong, Yajun Cui, Lingxiao Meng, Luxu Wang, Bo Liu, Minqi Li","doi":"10.2147/DDDT.S503930","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Diabetic osteoporosis (DOP), one of the usual complications in diabetic patients, poses a significant threat to bone health. Type H vessels in metaphysis and medial cortical bone are associated with osteogenesis. As a form of Vitamin K<sub>2,</sub> menaquinone-4 (MK-4) is a potential treatment for osteoporosis. We aimed to investigate whether MK-4 ameliorates DOP by promoting bone formation through protecting type H vessels and its associated mechanisms.</p><p><strong>Methods: </strong>High fat diet (HDF) feeding and streptozotocin (STZ) injection were applied to establish a mouse model of type 2 diabetic osteoporosis (T2DOP). Micro-CT, Masson staining, HE staining and IHC staining were applied to observe bone mass and the osteoblastic ability of osteoblasts. Tissue immunofluorescence (IF) staining and flow cytometry were employed to assess alteration of type H blood vessels. In vitro, to evaluate the functional level and mitophagy of ECs under high glucose conditions, wound healing assay, tube formation assay, EdU assay and IF were employed. Osteogenic differentiation ability in vitro was evaluated by ALP staining, AR staining, Western blot and RT-qPCR.</p><p><strong>Results: </strong>MK-4 alleviated type H vessel injury and angiogenesis-dependent osteogenesis in DOP mice, thereby maintaining the bone mass. The vitro results showed that MK-4 could mitigate the dysfunction of ECs subjected to HG treatment, and further facilitate the osteogenic differentiation of MC3T3-E1 cells. Moreover, mechanism exploration found that PINK1/Parkin-mediated mitophagy was required for the impact of MK-4 on ECs. Meanwhile, ERK signal pathway is necessary for the improvement of MK-4 in PINK1/Parkin-mediated mitophagy.</p><p><strong>Conclusion: </strong>MK-4 is capable of alleviating the PINK1/Parkin-mediated mitophagy of ECs via the ERK pathway, thereby facilitating angiogenesis-dependent bone formation and further ameliorating DOP.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"2173-2188"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S503930","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Diabetic osteoporosis (DOP), one of the usual complications in diabetic patients, poses a significant threat to bone health. Type H vessels in metaphysis and medial cortical bone are associated with osteogenesis. As a form of Vitamin K2, menaquinone-4 (MK-4) is a potential treatment for osteoporosis. We aimed to investigate whether MK-4 ameliorates DOP by promoting bone formation through protecting type H vessels and its associated mechanisms.
Methods: High fat diet (HDF) feeding and streptozotocin (STZ) injection were applied to establish a mouse model of type 2 diabetic osteoporosis (T2DOP). Micro-CT, Masson staining, HE staining and IHC staining were applied to observe bone mass and the osteoblastic ability of osteoblasts. Tissue immunofluorescence (IF) staining and flow cytometry were employed to assess alteration of type H blood vessels. In vitro, to evaluate the functional level and mitophagy of ECs under high glucose conditions, wound healing assay, tube formation assay, EdU assay and IF were employed. Osteogenic differentiation ability in vitro was evaluated by ALP staining, AR staining, Western blot and RT-qPCR.
Results: MK-4 alleviated type H vessel injury and angiogenesis-dependent osteogenesis in DOP mice, thereby maintaining the bone mass. The vitro results showed that MK-4 could mitigate the dysfunction of ECs subjected to HG treatment, and further facilitate the osteogenic differentiation of MC3T3-E1 cells. Moreover, mechanism exploration found that PINK1/Parkin-mediated mitophagy was required for the impact of MK-4 on ECs. Meanwhile, ERK signal pathway is necessary for the improvement of MK-4 in PINK1/Parkin-mediated mitophagy.
Conclusion: MK-4 is capable of alleviating the PINK1/Parkin-mediated mitophagy of ECs via the ERK pathway, thereby facilitating angiogenesis-dependent bone formation and further ameliorating DOP.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.