{"title":"Peptide-functionalized nanoparticles for brain-targeted therapeutics.","authors":"Sophia Tang, Emily L Han, Michael J Mitchell","doi":"10.1007/s13346-025-01840-w","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the rapid development of nanoparticle (NP)-based drug delivery systems, intravenous delivery of drugs to the brain remains a major challenge due to various biological barriers. To achieve therapeutic effects, NP-encapsulated drugs must avoid accumulation in off-target organs and selectively deliver to the brain, successfully cross the blood-brain barrier (BBB), and reach the target cells in the brain. Conjugating receptor-specific ligands to the surface of NPs is a promising technique for engineering NPs to overcome these barriers. Specifically, peptides as brain-targeting ligands have been of increasing interest given their ease of synthesis, low cytotoxicity, and strong affinity to target proteins. The success of peptides as targeting ligands is largely due to the diverse strategies of designing and modifying peptides with favorable properties, including membrane permeability and multi-receptor targeting. Here, we review the design and implementation of peptide-functionalized NP systems for neurological disease applications. We also explore advances in rational peptide design strategies for brain targeting, including using generative deep-learning models to computationally design new peptides.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01840-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the rapid development of nanoparticle (NP)-based drug delivery systems, intravenous delivery of drugs to the brain remains a major challenge due to various biological barriers. To achieve therapeutic effects, NP-encapsulated drugs must avoid accumulation in off-target organs and selectively deliver to the brain, successfully cross the blood-brain barrier (BBB), and reach the target cells in the brain. Conjugating receptor-specific ligands to the surface of NPs is a promising technique for engineering NPs to overcome these barriers. Specifically, peptides as brain-targeting ligands have been of increasing interest given their ease of synthesis, low cytotoxicity, and strong affinity to target proteins. The success of peptides as targeting ligands is largely due to the diverse strategies of designing and modifying peptides with favorable properties, including membrane permeability and multi-receptor targeting. Here, we review the design and implementation of peptide-functionalized NP systems for neurological disease applications. We also explore advances in rational peptide design strategies for brain targeting, including using generative deep-learning models to computationally design new peptides.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.