Blocking circular RNA FNDC3B induces fibroblast-like synoviocytes dysfunction to ameliorate rheumatoid arthritis through regulating the miR-125a-5p-Hexokinase2 axis.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-06-01 Epub Date: 2025-03-26 DOI:10.1007/s10616-025-00745-3
Jiaxin Fu, Zhi Liu, Guangxin Zhang, Chun Zhang
{"title":"Blocking circular RNA FNDC3B induces fibroblast-like synoviocytes dysfunction to ameliorate rheumatoid arthritis through regulating the miR-125a-5p-Hexokinase2 axis.","authors":"Jiaxin Fu, Zhi Liu, Guangxin Zhang, Chun Zhang","doi":"10.1007/s10616-025-00745-3","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune inflammatory joint disease. The cause of synovitis in rheumatoid arthritis involves the interaction between immune cells/macrophages and fibroblast-like synoviocytes (FLSs-RA). The impact of circular RNAs on FLSs and their role in RA pathology is still unknown. This study aimed to investigate the roles and molecular mechanisms of circular RNA FNDC3B in regulating cell injury and glucose metabolism of FLSs in RA. We demonstrated that circFNDC3B was significantly upregulated and miR-125a-5p was significantly downregulated in FLSs from RA patients. When circFNDC3B was silenced or miR-125a-5p was overexpressed, it reduced FLSs-RA glucose metabolism and increased oxidative stress-induced cell injury. Through bioinformatics analysis, RNA pull-down, and luciferase assays, it was found that circFNDC3B sponged miR-125a-5p to create a ceRNA network in FLSs-RA. The glucose metabolism rate was elevated in FLSs-RA, showing a glucose-dependent characteristic compared to normal FLSs. The enzyme hexokinase 2 (HK2), which is crucial for glucose metabolism, was identified as a direct target of miR-125a-5p in FLSs. In rescue experiments, restoring miR-125a-5p in circFNDC3B-overexpressing FLSs-RA successfully counteracted the circFNDC3B-promoted glucose metabolism and resistance to cell injury. In conclusion, this study highlighted the important roles and molecular mechanisms of circFNDC3B in accelerating glucose metabolism and preventing cell apoptosis in fibroblast-like synoviocytes during rheumatoid arthritis by modulating the miR-125a-5p-HK2 axis. Targeting the circFNDC3B-mediated glucose metabolism pathway could be a promising strategy for rheumatoid arthritis therapy.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-025-00745-3.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 3","pages":"83"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00745-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune inflammatory joint disease. The cause of synovitis in rheumatoid arthritis involves the interaction between immune cells/macrophages and fibroblast-like synoviocytes (FLSs-RA). The impact of circular RNAs on FLSs and their role in RA pathology is still unknown. This study aimed to investigate the roles and molecular mechanisms of circular RNA FNDC3B in regulating cell injury and glucose metabolism of FLSs in RA. We demonstrated that circFNDC3B was significantly upregulated and miR-125a-5p was significantly downregulated in FLSs from RA patients. When circFNDC3B was silenced or miR-125a-5p was overexpressed, it reduced FLSs-RA glucose metabolism and increased oxidative stress-induced cell injury. Through bioinformatics analysis, RNA pull-down, and luciferase assays, it was found that circFNDC3B sponged miR-125a-5p to create a ceRNA network in FLSs-RA. The glucose metabolism rate was elevated in FLSs-RA, showing a glucose-dependent characteristic compared to normal FLSs. The enzyme hexokinase 2 (HK2), which is crucial for glucose metabolism, was identified as a direct target of miR-125a-5p in FLSs. In rescue experiments, restoring miR-125a-5p in circFNDC3B-overexpressing FLSs-RA successfully counteracted the circFNDC3B-promoted glucose metabolism and resistance to cell injury. In conclusion, this study highlighted the important roles and molecular mechanisms of circFNDC3B in accelerating glucose metabolism and preventing cell apoptosis in fibroblast-like synoviocytes during rheumatoid arthritis by modulating the miR-125a-5p-HK2 axis. Targeting the circFNDC3B-mediated glucose metabolism pathway could be a promising strategy for rheumatoid arthritis therapy.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-025-00745-3.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信