Obesity-driven musculotendinous remodeling impairs tissue resilience to mechanical damage.

IF 3.2 3区 生物学 Q3 CELL BIOLOGY
Cesanelli L, Minderis P, Balnyte I, Ratkevicius A, Degens H, Satkunskiene D
{"title":"Obesity-driven musculotendinous remodeling impairs tissue resilience to mechanical damage.","authors":"Cesanelli L, Minderis P, Balnyte I, Ratkevicius A, Degens H, Satkunskiene D","doi":"10.1007/s00441-025-03967-1","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity has been associated with lower muscle strength-to-body mass ratio. Here, we evaluated the effects of diet-induced obesity on the mechano-structural properties of isolated muscles and tendons. Thirty 10-week-old male C57BL/6 J mice were randomly assigned to either an obesogenic high-fat diet group (OB) for 24 weeks or a control group (CN) maintained on a standard chow diet. Soleus muscle (SOL) and Achilles tendon (AT) specimens were isolated and subjected either to failure testing, 300 cycles of passive stretch-destretch, or isometric twitch contractions. Morpho-structural and protein expression analyses were conducted to assess collagen and adipose tissue accumulation, concentrations of cross-linking factors, and any alterations in the POSTN-TGFβ1-Akt signaling pathway. OB SOL and AT tissues were more fragile than those from CN (p < 0.05). A piecewise linear regression model revealed a tendency for OB tissues to exhibit steeper mechanical property changes within the first 20 cycles compared to CN, followed by a similar plateau phase in both groups. OB SOL-AT complexes showed a slower twitch-contraction-relaxation pattern than CN (p < 0.05). OB tendons and muscles were larger than those of the CN, with muscles featuring bigger fibers, and higher collagen area fraction (p < 0.05). Elevated TGFβ1 and POSTN concentrations were observed in OB tissues (p < 0.05), alongside increased P-Akt and P-4EBP1 expression (p < 0.05). These findings highlight the detrimental effects of obesity on the structural integrity of muscle and tendon tissues and suggest a significant role of POSTN-TGFβ1-Akt signaling in obesity-associated musculotendinous remodeling.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03967-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity has been associated with lower muscle strength-to-body mass ratio. Here, we evaluated the effects of diet-induced obesity on the mechano-structural properties of isolated muscles and tendons. Thirty 10-week-old male C57BL/6 J mice were randomly assigned to either an obesogenic high-fat diet group (OB) for 24 weeks or a control group (CN) maintained on a standard chow diet. Soleus muscle (SOL) and Achilles tendon (AT) specimens were isolated and subjected either to failure testing, 300 cycles of passive stretch-destretch, or isometric twitch contractions. Morpho-structural and protein expression analyses were conducted to assess collagen and adipose tissue accumulation, concentrations of cross-linking factors, and any alterations in the POSTN-TGFβ1-Akt signaling pathway. OB SOL and AT tissues were more fragile than those from CN (p < 0.05). A piecewise linear regression model revealed a tendency for OB tissues to exhibit steeper mechanical property changes within the first 20 cycles compared to CN, followed by a similar plateau phase in both groups. OB SOL-AT complexes showed a slower twitch-contraction-relaxation pattern than CN (p < 0.05). OB tendons and muscles were larger than those of the CN, with muscles featuring bigger fibers, and higher collagen area fraction (p < 0.05). Elevated TGFβ1 and POSTN concentrations were observed in OB tissues (p < 0.05), alongside increased P-Akt and P-4EBP1 expression (p < 0.05). These findings highlight the detrimental effects of obesity on the structural integrity of muscle and tendon tissues and suggest a significant role of POSTN-TGFβ1-Akt signaling in obesity-associated musculotendinous remodeling.

肥胖驱动的肌肉肌腱重塑损害组织对机械损伤的恢复力。
肥胖与较低的肌肉力量与身体质量比有关。在这里,我们评估了饮食引起的肥胖对孤立肌肉和肌腱力学结构特性的影响。选取30只10周龄雄性C57BL/6 J小鼠,随机分为致肥性高脂饮食组(OB)和对照组(CN),分别饲喂24周的标准饲料。分离比目鱼肌(SOL)和跟腱(AT)标本,进行失效测试、300次被动拉伸-收缩或等距抽动收缩。通过形态结构和蛋白表达分析来评估胶原和脂肪组织的积累、交联因子的浓度以及postn - tgf - β1- akt信号通路的任何改变。OB、SOL和AT组织比CN组织更脆弱(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信