Effect of temperate bacteriophage vB_SauS_S1 on the adaptability and pathogenicity of Staphylococcus aureus ST398.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Hui Liu, Craig Billington, Xing Ji, Haichang Sun, Xiang Hou, Abbas Soleimani-Delfan, Ran Wang, Heye Wang, Lili Zhang
{"title":"Effect of temperate bacteriophage vB_SauS_S1 on the adaptability and pathogenicity of Staphylococcus aureus ST398.","authors":"Hui Liu, Craig Billington, Xing Ji, Haichang Sun, Xiang Hou, Abbas Soleimani-Delfan, Ran Wang, Heye Wang, Lili Zhang","doi":"10.1186/s12866-025-03900-0","DOIUrl":null,"url":null,"abstract":"<p><p>Livestock-associated Staphylococcus aureus ST398 is a highly pathogenic species that causes infections in a wide variety of animals, including humans. The bacteriophage (phage) vB_SauS_S1 was isolated originally using a ST398 strain as its \"isolating host\", then the spot tests showed it was able to infect 73.33% (22/30) ST398 isolates. Phage S1 was assigned as a temperate phage based on genome analysis and phenotypic validation. Phylogenetic analysis showed that S1 was closely related to temperate phages tp310-2 and SA137ruMSSAST121PVL. Following infection of ST398 by phage S1, the lysogenic strain showed enhanced biofilm forming ability compared to the wildtype strain, and the invasion rate of MAC-T cells increased by 10.39%. The minimum inhibitory concentration showed that phage S1 did not change the antibiotic sensitivity of the lysogen strain, and the virulence of the lysogen strain did not change significantly in the injection models of Galleria mellonella (G. mellonella) and mice. The lysogen demonstrated superinfection immunity and reduced sensitivity to virulent phage infection. Thus, this study contributes to understanding the co-evolutionary relationships between temperate phages and the multi-host zoonotic pathogen S. aureus ST398.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"184"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03900-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Livestock-associated Staphylococcus aureus ST398 is a highly pathogenic species that causes infections in a wide variety of animals, including humans. The bacteriophage (phage) vB_SauS_S1 was isolated originally using a ST398 strain as its "isolating host", then the spot tests showed it was able to infect 73.33% (22/30) ST398 isolates. Phage S1 was assigned as a temperate phage based on genome analysis and phenotypic validation. Phylogenetic analysis showed that S1 was closely related to temperate phages tp310-2 and SA137ruMSSAST121PVL. Following infection of ST398 by phage S1, the lysogenic strain showed enhanced biofilm forming ability compared to the wildtype strain, and the invasion rate of MAC-T cells increased by 10.39%. The minimum inhibitory concentration showed that phage S1 did not change the antibiotic sensitivity of the lysogen strain, and the virulence of the lysogen strain did not change significantly in the injection models of Galleria mellonella (G. mellonella) and mice. The lysogen demonstrated superinfection immunity and reduced sensitivity to virulent phage infection. Thus, this study contributes to understanding the co-evolutionary relationships between temperate phages and the multi-host zoonotic pathogen S. aureus ST398.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信