{"title":"N-Acetylcysteine relieving hydrogen peroxide-induced damage in granulosa cells of sheep.","authors":"Hao Chen, Jine Wang, Bingzhu Zhao, Yahua Yang, Chongfa Yang, Zhijie Zhao, Xiaona Ding, Yang Li, Taojie Zhang, Zhaxi Yingpai, Shengdong Huo","doi":"10.1080/19336918.2025.2484182","DOIUrl":null,"url":null,"abstract":"<p><p>Sheep ovarian granulosa cells (GCs) play a unique role in the ovary. Damage to GCs can affect the normal development of oocytes. The oxidative stress model was constructed by H<sub>2</sub>O<sub>2</sub>to study the biological changes. Specifically, pathological characteristic was assessed by immunohistochemistry (IHC), while signaling pathway was studied using western blot, quantitative RT-PCR, and immunofluorescence. Theresults showed that the oxidative damage model was successfully constructed by 200 μmol/LH<sub>2</sub>O<sub>2</sub> for 12 h. NAC can protect the proliferation of GCs under H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and reduce apoptosis. It can also promote the secretion of E<sub>2</sub> and P<sub>4</sub> by GCs and reduce the inflammatory response of GCs. NAC can enhance the expression of NRF2, PI3K and Akt. These findings suggest that NAC alleviates H<sub>2</sub>O<sub>2</sub>-induced oxidative stress injury through NRF2/PI3K/AKT signaling pathways. Provide ideas for studying the poor quality of mammalian oocytes.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"19 1","pages":"2484182"},"PeriodicalIF":3.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2025.2484182","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sheep ovarian granulosa cells (GCs) play a unique role in the ovary. Damage to GCs can affect the normal development of oocytes. The oxidative stress model was constructed by H2O2to study the biological changes. Specifically, pathological characteristic was assessed by immunohistochemistry (IHC), while signaling pathway was studied using western blot, quantitative RT-PCR, and immunofluorescence. Theresults showed that the oxidative damage model was successfully constructed by 200 μmol/LH2O2 for 12 h. NAC can protect the proliferation of GCs under H2O2-induced oxidative stress and reduce apoptosis. It can also promote the secretion of E2 and P4 by GCs and reduce the inflammatory response of GCs. NAC can enhance the expression of NRF2, PI3K and Akt. These findings suggest that NAC alleviates H2O2-induced oxidative stress injury through NRF2/PI3K/AKT signaling pathways. Provide ideas for studying the poor quality of mammalian oocytes.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.