N-Acetylcysteine relieving hydrogen peroxide-induced damage in granulosa cells of sheep.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Cell Adhesion & Migration Pub Date : 2025-12-01 Epub Date: 2025-03-30 DOI:10.1080/19336918.2025.2484182
Hao Chen, Jine Wang, Bingzhu Zhao, Yahua Yang, Chongfa Yang, Zhijie Zhao, Xiaona Ding, Yang Li, Taojie Zhang, Zhaxi Yingpai, Shengdong Huo
{"title":"N-Acetylcysteine relieving hydrogen peroxide-induced damage in granulosa cells of sheep.","authors":"Hao Chen, Jine Wang, Bingzhu Zhao, Yahua Yang, Chongfa Yang, Zhijie Zhao, Xiaona Ding, Yang Li, Taojie Zhang, Zhaxi Yingpai, Shengdong Huo","doi":"10.1080/19336918.2025.2484182","DOIUrl":null,"url":null,"abstract":"<p><p>Sheep ovarian granulosa cells (GCs) play a unique role in the ovary. Damage to GCs can affect the normal development of oocytes. The oxidative stress model was constructed by H<sub>2</sub>O<sub>2</sub>to study the biological changes. Specifically, pathological characteristic was assessed by immunohistochemistry (IHC), while signaling pathway was studied using western blot, quantitative RT-PCR, and immunofluorescence. Theresults showed that the oxidative damage model was successfully constructed by 200 μmol/LH<sub>2</sub>O<sub>2</sub> for 12 h. NAC can protect the proliferation of GCs under H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and reduce apoptosis. It can also promote the secretion of E<sub>2</sub> and P<sub>4</sub> by GCs and reduce the inflammatory response of GCs. NAC can enhance the expression of NRF2, PI3K and Akt. These findings suggest that NAC alleviates H<sub>2</sub>O<sub>2</sub>-induced oxidative stress injury through NRF2/PI3K/AKT signaling pathways. Provide ideas for studying the poor quality of mammalian oocytes.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"19 1","pages":"2484182"},"PeriodicalIF":3.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2025.2484182","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sheep ovarian granulosa cells (GCs) play a unique role in the ovary. Damage to GCs can affect the normal development of oocytes. The oxidative stress model was constructed by H2O2to study the biological changes. Specifically, pathological characteristic was assessed by immunohistochemistry (IHC), while signaling pathway was studied using western blot, quantitative RT-PCR, and immunofluorescence. Theresults showed that the oxidative damage model was successfully constructed by 200 μmol/LH2O2 for 12 h. NAC can protect the proliferation of GCs under H2O2-induced oxidative stress and reduce apoptosis. It can also promote the secretion of E2 and P4 by GCs and reduce the inflammatory response of GCs. NAC can enhance the expression of NRF2, PI3K and Akt. These findings suggest that NAC alleviates H2O2-induced oxidative stress injury through NRF2/PI3K/AKT signaling pathways. Provide ideas for studying the poor quality of mammalian oocytes.

n -乙酰半胱氨酸减轻过氧化氢诱导的绵羊颗粒细胞损伤。
绵羊卵巢颗粒细胞(GCs)在卵巢中起着独特的作用。GCs的损伤会影响卵母细胞的正常发育。用h2o2建立氧化应激模型,研究其生物学变化。具体而言,通过免疫组织化学(IHC)评估病理特征,同时使用western blot,定量RT-PCR和免疫荧光研究信号通路。结果表明,200 μmol/LH2O2作用12 h可成功建立氧化损伤模型;NAC可以保护h2o2诱导的氧化应激下GCs的增殖,减少细胞凋亡。还能促进GCs分泌E2和P4,减轻GCs的炎症反应。NAC可增强NRF2、PI3K和Akt的表达。这些结果表明NAC通过NRF2/PI3K/AKT信号通路缓解h2o2诱导的氧化应激损伤。为研究哺乳动物卵母细胞质量问题提供思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
7
审稿时长
53 weeks
期刊介绍: Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field. Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信