Kuo Yu, Xiaolong Liu, Guangyuan Wu, Zhongyao An, Xin Wang, Yang Liu, Hailong Wang, Mingli Huang, Linlin Zhao, Ce Shi, Xin Sun, Lu Xu, Sen Qi, Xin Zhang, Yueqiu Teng, Song Guo Zheng, Zhiren Zhang, Zhenkun Wang
{"title":"Targeting SHP-1-Mediated Inhibition of STAT3 and ERK Signalling Pathways Rescues the Hyporesponsiveness of MHC-I-Deficient NK-92MI.","authors":"Kuo Yu, Xiaolong Liu, Guangyuan Wu, Zhongyao An, Xin Wang, Yang Liu, Hailong Wang, Mingli Huang, Linlin Zhao, Ce Shi, Xin Sun, Lu Xu, Sen Qi, Xin Zhang, Yueqiu Teng, Song Guo Zheng, Zhiren Zhang, Zhenkun Wang","doi":"10.1111/cpr.70035","DOIUrl":null,"url":null,"abstract":"<p><p>Natural Killer (NK) cells have shown promising prospects in 'off-the-shelf' cell therapy, particularly the NK-92 cell line, which can serve as a foundation for the next generation of universal chimeric antigen receptor (CAR)-engineered NK products. A key strategy for generating universal cellular products is the elimination of the beta-2-microglobulin (B2M) gene, which encodes a component of MHC class I molecules (MHC-I) that plays a role in the presentation of foreign antigens and in the 'licensing' or 'education' of NK cells. To functionally study the impacts of MHC-I deficiency on NK-92, we generated a B2M knockout (KO) NK-92MI (B-92) cell line and compared the multidimensional properties of B2M KO and wild-type NK-92MI cells in terms of biological phenotypes, effector functions, and transcriptomic signatures. We observed a decrease in activating receptors, cytokine production, and cytotoxicity in B-92 cells. Further analysis of signalling events revealed that the upregulated expression and phosphorylation of SHP-1 in B-92 cells inhibited the phosphorylation levels of STAT3 and ERK, thereby affecting their killing function. By knocking out SHP-1 (PTPN6), we partially restored the cytotoxic function of B-92 cells. Notably, we also found that CAR modification can overcome the hyporesponsiveness of B-92 cells. These findings will facilitate further exploration in the development of NK cell-based products.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70035"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70035","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural Killer (NK) cells have shown promising prospects in 'off-the-shelf' cell therapy, particularly the NK-92 cell line, which can serve as a foundation for the next generation of universal chimeric antigen receptor (CAR)-engineered NK products. A key strategy for generating universal cellular products is the elimination of the beta-2-microglobulin (B2M) gene, which encodes a component of MHC class I molecules (MHC-I) that plays a role in the presentation of foreign antigens and in the 'licensing' or 'education' of NK cells. To functionally study the impacts of MHC-I deficiency on NK-92, we generated a B2M knockout (KO) NK-92MI (B-92) cell line and compared the multidimensional properties of B2M KO and wild-type NK-92MI cells in terms of biological phenotypes, effector functions, and transcriptomic signatures. We observed a decrease in activating receptors, cytokine production, and cytotoxicity in B-92 cells. Further analysis of signalling events revealed that the upregulated expression and phosphorylation of SHP-1 in B-92 cells inhibited the phosphorylation levels of STAT3 and ERK, thereby affecting their killing function. By knocking out SHP-1 (PTPN6), we partially restored the cytotoxic function of B-92 cells. Notably, we also found that CAR modification can overcome the hyporesponsiveness of B-92 cells. These findings will facilitate further exploration in the development of NK cell-based products.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.