Phyllospheric application of Bacillus mucilaginosus mediates the recovery of tea plants exposed to low-temperature stress by alteration of leaf endophytic community and plant physiology.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Xiao Han, Yaozong Shen, Litao Sun, Jiazhi Shen, Yilin Mao, Kai Fan, Shuangshuang Wang, Zhaotang Ding, Yu Wang
{"title":"Phyllospheric application of Bacillus mucilaginosus mediates the recovery of tea plants exposed to low-temperature stress by alteration of leaf endophytic community and plant physiology.","authors":"Xiao Han, Yaozong Shen, Litao Sun, Jiazhi Shen, Yilin Mao, Kai Fan, Shuangshuang Wang, Zhaotang Ding, Yu Wang","doi":"10.1186/s12866-025-03880-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In winter, tea plants are highly susceptible to low-temperature freezing damage. The rapid recovery of tea plant vigor in spring is crucial for tea yield and quality. Some studies have reported that Bacillus mucilaginosus could improve the stress resistance of plants. However, there were no reports on the effect of B. mucilaginosus on the recovery of tea plant vigor after low-temperature stress. This study firstly used different concentrations of B. mucilaginosus to spray tea leaves and used 16S rRNA high-throughput sequencing technology to study the impact of different treatments on tea leaf endophytic populations. Meanwhile, physiological indexes such as Soil and plant analyzer development values (SPAD), maximum photochemical quantum yield of PS II (Fv/Fm), and superoxide dismutase (SOD) were measured and analyzed in tea plant leaves of different treatments, and the correlation between them and the bacterial community was studied.</p><p><strong>Results: </strong>Microbial results showed that the diversity of leaf endophytic populations treated with different concentrations of Bacillus mucilaginosus (T1, T2, T3) was higher than that in control group (CK) leaves, and T2 treatment had the highest diversity. The dominant bacterial phyla of all samples were Proteobacteria, Actinobacteriota, Firmicutes, and Bacteroidota. At the phylum level, the relative abundance of Actinobacteriota, Firmicutes, and Bacteroidota in leaves treated with B. mucilaginosus was significantly higher than that in the control. At the genus level, the relative abundance of Paenibacillus, Nocardioides, and Marmoricola in leaves treated with B. mucilaginosus was significantly higher than that in the control. Different concentrations of B. mucilaginosus affected the distribution of leaf endophytic populations. At the level of bacterial function, abundant metabolic functional features were observed, including amino acid transport and metabolism, as well as energy production and conversion, indicating that bacterial metabolism in tea plant leaf samples tends to be vigorous. The treatment with B. mucilaginosus significantly increased the activity of antioxidant enzymes and osmolyte content, promoted the recovery of Fv/Fm in tea plants after low-temperature stress, and improved the resistance of tea leaves to low-temperature stress, thereby promoting recovery.</p><p><strong>Conclusions: </strong>This study showed that B. mucilaginosus could significantly change the community structure of leaf endophytic populations, and increase antioxidant enzyme activity and osmolyte content in tea plants after low-temperature stress, promoting the rapid recovery of photosynthesis, and thereby benefiting the recovery of tea plant leaves. This study provided a theoretical basis for the application of B. mucilaginosus in practical production and also provided new ideas for the recovery of tea plants exposed to low-temperature stress.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"177"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956246/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03880-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In winter, tea plants are highly susceptible to low-temperature freezing damage. The rapid recovery of tea plant vigor in spring is crucial for tea yield and quality. Some studies have reported that Bacillus mucilaginosus could improve the stress resistance of plants. However, there were no reports on the effect of B. mucilaginosus on the recovery of tea plant vigor after low-temperature stress. This study firstly used different concentrations of B. mucilaginosus to spray tea leaves and used 16S rRNA high-throughput sequencing technology to study the impact of different treatments on tea leaf endophytic populations. Meanwhile, physiological indexes such as Soil and plant analyzer development values (SPAD), maximum photochemical quantum yield of PS II (Fv/Fm), and superoxide dismutase (SOD) were measured and analyzed in tea plant leaves of different treatments, and the correlation between them and the bacterial community was studied.

Results: Microbial results showed that the diversity of leaf endophytic populations treated with different concentrations of Bacillus mucilaginosus (T1, T2, T3) was higher than that in control group (CK) leaves, and T2 treatment had the highest diversity. The dominant bacterial phyla of all samples were Proteobacteria, Actinobacteriota, Firmicutes, and Bacteroidota. At the phylum level, the relative abundance of Actinobacteriota, Firmicutes, and Bacteroidota in leaves treated with B. mucilaginosus was significantly higher than that in the control. At the genus level, the relative abundance of Paenibacillus, Nocardioides, and Marmoricola in leaves treated with B. mucilaginosus was significantly higher than that in the control. Different concentrations of B. mucilaginosus affected the distribution of leaf endophytic populations. At the level of bacterial function, abundant metabolic functional features were observed, including amino acid transport and metabolism, as well as energy production and conversion, indicating that bacterial metabolism in tea plant leaf samples tends to be vigorous. The treatment with B. mucilaginosus significantly increased the activity of antioxidant enzymes and osmolyte content, promoted the recovery of Fv/Fm in tea plants after low-temperature stress, and improved the resistance of tea leaves to low-temperature stress, thereby promoting recovery.

Conclusions: This study showed that B. mucilaginosus could significantly change the community structure of leaf endophytic populations, and increase antioxidant enzyme activity and osmolyte content in tea plants after low-temperature stress, promoting the rapid recovery of photosynthesis, and thereby benefiting the recovery of tea plant leaves. This study provided a theoretical basis for the application of B. mucilaginosus in practical production and also provided new ideas for the recovery of tea plants exposed to low-temperature stress.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信