Abida Khan, Hayat Ali Alzahrani, Shatha Ghazi Felemban, Alanood Saeed Algarni, Amani Baqqan S Alenezi, Mehnaz Kamal, Zia Ur Rehman, Syed Mohammed Basheeruddin Asdaq, Naveed Ahmed, Bashayer Mohammed Alharbi, Bander Sharqi Alanazi, Mohd Imran
{"title":"Exploring TGF-β signaling in benign prostatic hyperplasia: from cellular senescence to fibrosis and therapeutic implications.","authors":"Abida Khan, Hayat Ali Alzahrani, Shatha Ghazi Felemban, Alanood Saeed Algarni, Amani Baqqan S Alenezi, Mehnaz Kamal, Zia Ur Rehman, Syed Mohammed Basheeruddin Asdaq, Naveed Ahmed, Bashayer Mohammed Alharbi, Bander Sharqi Alanazi, Mohd Imran","doi":"10.1007/s10522-025-10226-x","DOIUrl":null,"url":null,"abstract":"<p><p>As men get older, they often develop benign prostatic hyperplasia (BPH), an enlarged prostate that is not cancerous or dangerous. Although the etiology of BPH is unknown, increasing evidence indicates that the TGF-β signaling pathway might be a key player in its pathogenesis. TGF-β is a pleiotropic cytokine involved in proliferation, differentiation, and extracellular matrix re-modeling, which are all dysregulated in BPH. Cellular senescence is primarily initiated by TGF-β--induced, irreversible growth arrest and usually limits the prostate gland's hyperplastic growth. Moreover, senescent cells generate a Senescence-Associated Secretory Phenotype (SASP), which consists of numerous proinflammatory and profibrotic factors that can worsen disease ontogeny. In addition, TGF-β is among the most fibrogenic factors. At the same time, fibrosis involves a massive accumulation of extracellular matrix proteins, which can increase tissue stiffness and a loss of normal organ functions. TGF-β-mediated fibrosis in BPH changes the mechanical properties of the prostate and surrounding tissues to contribute to lower urinary tract symptoms. This review discusses the complicated molecular signaling of TGF-β underlying changes in cellular senescence and fibrosis during BPH concerning its therapeutic potential.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 2","pages":"79"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10226-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As men get older, they often develop benign prostatic hyperplasia (BPH), an enlarged prostate that is not cancerous or dangerous. Although the etiology of BPH is unknown, increasing evidence indicates that the TGF-β signaling pathway might be a key player in its pathogenesis. TGF-β is a pleiotropic cytokine involved in proliferation, differentiation, and extracellular matrix re-modeling, which are all dysregulated in BPH. Cellular senescence is primarily initiated by TGF-β--induced, irreversible growth arrest and usually limits the prostate gland's hyperplastic growth. Moreover, senescent cells generate a Senescence-Associated Secretory Phenotype (SASP), which consists of numerous proinflammatory and profibrotic factors that can worsen disease ontogeny. In addition, TGF-β is among the most fibrogenic factors. At the same time, fibrosis involves a massive accumulation of extracellular matrix proteins, which can increase tissue stiffness and a loss of normal organ functions. TGF-β-mediated fibrosis in BPH changes the mechanical properties of the prostate and surrounding tissues to contribute to lower urinary tract symptoms. This review discusses the complicated molecular signaling of TGF-β underlying changes in cellular senescence and fibrosis during BPH concerning its therapeutic potential.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.