Evaluation of rapid detection methods for H5N1 virus using biosensors: An AI-based study.

IF 1.9
Bioinformation Pub Date : 2024-11-30 eCollection Date: 2024-01-01 DOI:10.6026/9732063002001516
Roberto Eggenhöffner, Paola Ghisellini, Cristina Rando, Simonetta Papa, Allen Khakshooy, Luca Giacomelli
{"title":"Evaluation of rapid detection methods for H5N1 virus using biosensors: An AI-based study.","authors":"Roberto Eggenhöffner, Paola Ghisellini, Cristina Rando, Simonetta Papa, Allen Khakshooy, Luca Giacomelli","doi":"10.6026/9732063002001516","DOIUrl":null,"url":null,"abstract":"<p><p>High mortality and zoonotic potential predispose the H5N1 avian influenza virus as a critical threat. knowing that an epidemic could be occurring, quick and precise diagnostic techniques are essential for managing and containing possible epidemics. To detect H5N1 in saliva samples, this study investigates the theoretical design, simulation and evaluation of three kind of biosensors based on different technologies with potential as rapid identifications tools to diagnose quickly H5N1: Lateral Flow Tests (LFT), Field Effect transistors (FET) based electrochemical sensors and Quartz Crystal Microbalance (QCM) sensors. Through detailed AI-based simulations, we show the capabilities, sensitivities and specificities of these biosensors, highlighting their potential for applications in general biology as well as their suitability both for routine home practice and for applications by control entities in public settings. We therefore wish to pave the way to a framework for the quick creation of detection tools that can be swiftly implemented for rapid deployment in case of an outbreak of disease.</p>","PeriodicalId":8962,"journal":{"name":"Bioinformation","volume":"20 11","pages":"1516-1523"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6026/9732063002001516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High mortality and zoonotic potential predispose the H5N1 avian influenza virus as a critical threat. knowing that an epidemic could be occurring, quick and precise diagnostic techniques are essential for managing and containing possible epidemics. To detect H5N1 in saliva samples, this study investigates the theoretical design, simulation and evaluation of three kind of biosensors based on different technologies with potential as rapid identifications tools to diagnose quickly H5N1: Lateral Flow Tests (LFT), Field Effect transistors (FET) based electrochemical sensors and Quartz Crystal Microbalance (QCM) sensors. Through detailed AI-based simulations, we show the capabilities, sensitivities and specificities of these biosensors, highlighting their potential for applications in general biology as well as their suitability both for routine home practice and for applications by control entities in public settings. We therefore wish to pave the way to a framework for the quick creation of detection tools that can be swiftly implemented for rapid deployment in case of an outbreak of disease.

利用生物传感器评价H5N1病毒快速检测方法:一项基于人工智能的研究
高死亡率和人畜共患的可能性使 H5N1 禽流感病毒成为一种严重威胁。在意识到可能发生流行病的情况下,快速、精确的诊断技术对于管理和遏制可能的流行病至关重要。为了检测唾液样本中的 H5N1,本研究调查了三种基于不同技术的生物传感器的理论设计、模拟和评估,这三种传感器有可能成为快速诊断 H5N1 的快速识别工具:侧流试验(LFT)、基于场效应晶体管(FET)的电化学传感器和石英晶体微天平(QCM)传感器。通过基于人工智能的详细模拟,我们展示了这些生物传感器的能力、灵敏度和特异性,突出了它们在普通生物学中的应用潜力,以及它们在家庭常规实践和公共场所控制实体应用中的适用性。因此,我们希望为快速创建检测工具的框架铺平道路,以便在疾病爆发时迅速部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinformation
Bioinformation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
自引率
0.00%
发文量
128
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信