Network pharmacology and in silico study of quercetin and structurally similar flavonoids as osteogenesis inducers that interact with oestrogen receptors.
Mohammad-Sadegh Lotfi, Hamidreza Jamali, Fatemeh B Rassouli
{"title":"Network pharmacology and <i>in silico</i> study of quercetin and structurally similar flavonoids as osteogenesis inducers that interact with oestrogen receptors.","authors":"Mohammad-Sadegh Lotfi, Hamidreza Jamali, Fatemeh B Rassouli","doi":"10.1080/13813455.2025.2483910","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Osteoporosis poses a global health challenge, particularly with an ageing population. Quercetin, isorhamnetin, avicularin, isoquercetin, quercitrin, and taxifolin are natural flavonoids with similar structure that induce ontogenesis.</p><p><p><b>Methods:</b> In the present study, proteins in oestrogen signalling and bone morphogenesis were analysed, and hub genes were identified with Cytoscape, followed by pathway analysis. Then, molecular targets of flavonoids and osteoporosis-related targets were identified, and overlaps were detected. Molecular docking and dynamics simulations assessed flavonoid interactions with ERs.</p><p><p><b>Results:</b> The study identified 14 gene products linked to osteoporosis, including ESR1 and ESR2. Enrichment analyses confirmed ESR involvement in various biological processes. SwissTargetPrediction highlighted quercetin and isorhamnetin as favourable targets for ESR1 and ESR2. Molecular docking and dynamics revealed favourable and stable binding of flavonoids to ERα and ERβ.</p><p><p><b>Conclusion:</b> These interactions suggest therapeutic potential of natural flavonoids for osteoporosis treatment by targeting ERs, laying a foundation for future research in preclinical and clinical settings.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-12"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2025.2483910","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Osteoporosis poses a global health challenge, particularly with an ageing population. Quercetin, isorhamnetin, avicularin, isoquercetin, quercitrin, and taxifolin are natural flavonoids with similar structure that induce ontogenesis.
Methods: In the present study, proteins in oestrogen signalling and bone morphogenesis were analysed, and hub genes were identified with Cytoscape, followed by pathway analysis. Then, molecular targets of flavonoids and osteoporosis-related targets were identified, and overlaps were detected. Molecular docking and dynamics simulations assessed flavonoid interactions with ERs.
Results: The study identified 14 gene products linked to osteoporosis, including ESR1 and ESR2. Enrichment analyses confirmed ESR involvement in various biological processes. SwissTargetPrediction highlighted quercetin and isorhamnetin as favourable targets for ESR1 and ESR2. Molecular docking and dynamics revealed favourable and stable binding of flavonoids to ERα and ERβ.
Conclusion: These interactions suggest therapeutic potential of natural flavonoids for osteoporosis treatment by targeting ERs, laying a foundation for future research in preclinical and clinical settings.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.