{"title":"The impact of YTHDF2-mediated NCOA4 methylation on myocardial ferroptosis.","authors":"Xiaoqi Shao, Mengxian Sun, Ruonan Wang, Mingyang Leng, Hongtao Diao, Xu Li, Dongwei Wang, Kaili Wu, Liang Wang, Wen Lv, Xianglu Rong, Yue Zhang","doi":"10.1007/s10495-025-02106-z","DOIUrl":null,"url":null,"abstract":"<p><p>The N6-Methyladenosine (m6A) modification is prevalent across various RNA species, including messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs), and has garnered significant interest due to its potential implications in cardiovascular disease. Despite extensive research, the precise relationship between m6A and myocardial infarction (MI) remains inadequately understood. The human YTH domain family 2 (YTHDF2) protein has emerged as a critical factor in this context, selectively recognizing m6A-modified RNAs and modulating their degradation. Our investigation revealed that the knockdown of YTHDF2 markedly enhanced ferroptosis in vitro, whereas the overexpression of YTHDF2 exhibited a significant protective effect. Mechanistically, it was elucidated that YTHDF2 suppresses the expression of nuclear receptor coactivator 4 (NCOA4) via m6A methylation. Furthermore, the inhibition of cardiomyocyte ferroptosis by YTHDF2 is contingent upon its regulation of NCOA4. Additionally, the enzyme methyltransferase-like 3 (METTL3) was identified as a pivotal factor in the m6A-mediated degradation of NCOA4 mRNA. Taken together, our results highlight the significant role of YTHDF2-mediated NCOA4 m6A methylation in the regulation of myocardial infarction and myocardial ferroptosis, suggesting that YTHDF2 may be a promising target for therapeutic interventions in myocardial infarction.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-025-02106-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The N6-Methyladenosine (m6A) modification is prevalent across various RNA species, including messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs), and has garnered significant interest due to its potential implications in cardiovascular disease. Despite extensive research, the precise relationship between m6A and myocardial infarction (MI) remains inadequately understood. The human YTH domain family 2 (YTHDF2) protein has emerged as a critical factor in this context, selectively recognizing m6A-modified RNAs and modulating their degradation. Our investigation revealed that the knockdown of YTHDF2 markedly enhanced ferroptosis in vitro, whereas the overexpression of YTHDF2 exhibited a significant protective effect. Mechanistically, it was elucidated that YTHDF2 suppresses the expression of nuclear receptor coactivator 4 (NCOA4) via m6A methylation. Furthermore, the inhibition of cardiomyocyte ferroptosis by YTHDF2 is contingent upon its regulation of NCOA4. Additionally, the enzyme methyltransferase-like 3 (METTL3) was identified as a pivotal factor in the m6A-mediated degradation of NCOA4 mRNA. Taken together, our results highlight the significant role of YTHDF2-mediated NCOA4 m6A methylation in the regulation of myocardial infarction and myocardial ferroptosis, suggesting that YTHDF2 may be a promising target for therapeutic interventions in myocardial infarction.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.