Whole-genome sequencing, as a powerful diagnostic tool in hearing loss, reveals novel variants in PTPRQ missed by whole-exome sequencing.

IF 2.1 4区 医学 Q3 GENETICS & HEREDITY
Daniel Bengl, Asuman Koparir, Wahyu Eka Prastyo, Christian Remmele, Marcus Dittrich, Sophie Flandin, Waafa Shehata-Dieler, Clemens Grimm, Thomas Haaf, Michaela A H Hofrichter
{"title":"Whole-genome sequencing, as a powerful diagnostic tool in hearing loss, reveals novel variants in PTPRQ missed by whole-exome sequencing.","authors":"Daniel Bengl, Asuman Koparir, Wahyu Eka Prastyo, Christian Remmele, Marcus Dittrich, Sophie Flandin, Waafa Shehata-Dieler, Clemens Grimm, Thomas Haaf, Michaela A H Hofrichter","doi":"10.1186/s12920-025-02122-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Hearing loss (HL) is one of the most common congenital disorders, affecting 1-2 in 1,000 newborns. Modern genetic diagnostics using large gene panels and/or whole exome analysis (WES) can identify disease-causing mutations in 25-50 % of patients, with higher solve rates in individuals with earlier onset.</p><p><strong>Results: </strong>Here, we used whole-genome sequencing (WGS) to reanalyze 14 index patients/families who remained without genetic diagnosis by WES. We were able to identify the genetic cause of HL in 6 families ( <math><mo>∼</mo></math> 43 %). Two families were diagnosed with DFNB84A caused by compound heterozygous recessive mutations in PTPRQ. Three of the four underlying variants, including a structural variant, a deep intronic variant, and a splice variant, escaped detection by WES. Minigene assays confirmed the pathogenicity of the intronic and the splice variants. In addition, we used protein 3D structure prediction and rigid ligand docking to study the pathogenicity of variants that escape nonsense-mediated decay.</p><p><strong>Conclusion: </strong>In our study, we present four novel variants in PTPRQ, three of which were detected only by WGS. To our knowledge, we report here the first pathogenic deep intronic PTPRQ variant causing HL. Our results suggest that the mutational spectrum of PTPRQ is not well covered by standard WES and that PTPRQ-associated hearing loss may be more frequent than previously thought. WGS provides an additional layer of information in the diagnostics of HL.</p>","PeriodicalId":8915,"journal":{"name":"BMC Medical Genomics","volume":"18 1","pages":"59"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956499/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12920-025-02122-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: Hearing loss (HL) is one of the most common congenital disorders, affecting 1-2 in 1,000 newborns. Modern genetic diagnostics using large gene panels and/or whole exome analysis (WES) can identify disease-causing mutations in 25-50 % of patients, with higher solve rates in individuals with earlier onset.

Results: Here, we used whole-genome sequencing (WGS) to reanalyze 14 index patients/families who remained without genetic diagnosis by WES. We were able to identify the genetic cause of HL in 6 families ( 43 %). Two families were diagnosed with DFNB84A caused by compound heterozygous recessive mutations in PTPRQ. Three of the four underlying variants, including a structural variant, a deep intronic variant, and a splice variant, escaped detection by WES. Minigene assays confirmed the pathogenicity of the intronic and the splice variants. In addition, we used protein 3D structure prediction and rigid ligand docking to study the pathogenicity of variants that escape nonsense-mediated decay.

Conclusion: In our study, we present four novel variants in PTPRQ, three of which were detected only by WGS. To our knowledge, we report here the first pathogenic deep intronic PTPRQ variant causing HL. Our results suggest that the mutational spectrum of PTPRQ is not well covered by standard WES and that PTPRQ-associated hearing loss may be more frequent than previously thought. WGS provides an additional layer of information in the diagnostics of HL.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Genomics
BMC Medical Genomics 医学-遗传学
CiteScore
3.90
自引率
0.00%
发文量
243
审稿时长
3.5 months
期刊介绍: BMC Medical Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of functional genomics, genome structure, genome-scale population genetics, epigenomics, proteomics, systems analysis, and pharmacogenomics in relation to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信